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The central theme involved in this work is the continuing study of
certain fundamental features associated with the nonlinear wave
propagation arising in and motivated by physical problems. The usefulness
of the work is attested to by the varied applications, and wide areas of
interest in physics, engineering and mathematics. The work accomplished
involves wave propagatioh in a number of areas including fluid mechanics,
plasma physics, theoretical physics, statistical mechanics, nonlinear
optics,multidimensional solitons, multidimensional inverse problems,
Painleve equations, direct linearizations of certain nonlinear wave
equations, DBAR problems, Riemann-Hilbert boundary value problems,
algebraic methods and symmetry analysis of multidimensional systems,
differential geometry, etc. Of particular interest to the Navy is the
recent discovery that many of the equations describing ship hydrodynamics
in channels of finite depth obey nonlinear equations which have been
studied extensively by our group.

(1) Research Objectives

The continuing aspects of the work performed under this grant
has been the study of the nonlinear wave phenomena associated with
physically significant systems. As mentioned above, this work has
important applications in fluid dynamics (e.g. long waves in stratified
fluids, solitons generated by ships),nonlinear optics (e.g. self-induced
transparency, and self-focussing of light), and mathematical physics as
well as important consequences in mathematics. Individuals working with

us and hence partially associated with this grant include: Dr. Peter

Clarkson, Postdoctoral Research Associate in Mathematics and Computer Science,




Dr.

Computer Science, Mr. Ugurhan Mugan, a graduate student in Mathematics and

Daniel Bar Yaacov, Postdoctoral Research Associate in Mathematics and

Computer Science, Mr. Vassilis Papageorgiou, a graduate student in

Mathematics and Computer Science and Mr. Rogelio Balart, a graduate

student in Mathematics and Computer Science. Recent publications

supported by this research grant are enclosed.

Areas of Study Include:

Solutions of nonlinear multidimensional systems

arising in Physics

Inverse problems, especially in multidimensions

and DBAR methodology

Riemann-Hilbert boundary value problems

and inverse problems

Solitons in multidimensional systems, solitons

generated by ships in narrow channels

IST for nonlinear singular integro-differential equations;
the Benjamin-Ono equation, the intermediate Long Wave
Equation, the Sine-Hilbert equation, multidimensional
generalizations.

Discrete IST and numerical simulations

Painleve equations

Focuésing singularities in nonlinear wave propagation
Applications to surface waves, internal waves, shear flows,

noniinear optics, S.I.T., relativity etc.

|: e
- ad A w2



nonlinear evolution equations

equations arising in differential geometry
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Physica 18D (1986) 223-241
North-Holland. Amsterdam
' MULTIDIMENSIONAL NONLINEAR EVOLUTION EQUATIONS

AND INVERSE SCATTERING

Mark J. ABLOWITZ

Department of Mathemaucs and Computer Science, Clarkson Unwersiy, Poisdam. New York 13676, USA
and

Adran I. NACHMAN

Department of Mathemaucs. Untersity of Rochester, Rochester, New York 14627, USA

In this paper we will review some recent work done in the field of integrable nonlinear evolution equauons and inverse
scattering. We will concentrate on the basic underiving areas and refer interested readers to suitable references for complete
details: specifically background maienal can be found in vanous texts oo this subject (e.g. [1] bv Ablowitz and Segur). More
recent references will be given as necessary. The outline of the paper is as {ollows.

1) Introductory remarks.

2) A discussion of two separate but related i1ssues. Namely, (a) solving certain nonlinear evolution equauons 1o infinite space:
and (b) inverse scattenng. These are important problems having many physical applicatons. Moreover, they are related to each
other by what we refer to as the Inverse Scattenng Transform (IST).

3) At the end of the paper we will make some remarks on the possibility of solving nonlinear evoluuon equations in high
dimensions (i.¢. equations with more than two spatial and one ume vanable) by using the IST method as we now understand 1t.

1. Introduction

The prototype nonlinear evolution equations for our purposes will be the Korteweg-deVries (KdV)
equation

u, = 6uu, +u,, =0 (1)
in one spatial dimension. and the Kadomtsev-Petviashvili (KP) equation

XXX)X= ‘3G:UVV (:,')

(u,— 6uu_ +u
in two spatial dimensions. (It turns out that the sign of ¢~ is critical: there being two cases labeled by KPy:
0°= -1; KP;=0"=1)

Histoncallv speaking, the KdV equation was the first equation solved (on the infinite line) by use of
inverse scattering. Subsequently numerous other equations of physical interest in one spatial dimension
were so'ved e.g. nonlinear Schridinger. sine-Gordon. three-wave interaction. modified KdV. Boussinesq. . . . .
These equations are all partial differential equations. In fact. there are other equations which are discrete in
' space and continuous in time (differential-difference) and equations discrete in both space and ume which

also may be solved by IST. One other class of equations in one spatial and one time dimension fit into this
scheme. namely nonlinear singular integro-differential equations: with the prototvpe being the so-called

0167-2789 /86 .,/S02.50 T Elsevier Science Publishers B.V.
(North-Holland Phyvsics Publishing Division)
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Intermediate Long Wave equation [2a],
1 1 r= o
u:*-gux*zuux“'<ru)xx-0- Tllgyg'{.xCOlh%(f—I)u(f)df. (3)

As & —0. (3) tends to the KdV equation (with appropriate coefficients) and as § — oc it tends to the
so-called Benjamin-Ono equation

u,+ 2uu,+ (Hu),, =0, Hu-%f‘” ;‘—(_%de. (4)

The method to solve (4) was recently found and it has certain features in common with some two-dimen-
sional problems - specifically KP, (see {2b]).

It should also be remarked that some ode's can also be solved by similar methods; specifically the
classical equations of Painlevé (see for example [3]). We will not dwell on this aspect any further in this
lecture.

In two spatial one ume dimension the KP equation is onlv one of the equations that can be solved in
infinite space. However. an effective method was not realized until a short ume ago. The important new
idea of treating inverse scattering as a “3 problem” (see [9a]) was used in [4] to solve KP;; and paved the
way for the development of the IST for a wide class of equations in 2 + 1 dimensions (a review of this and
relaied work can be found in [5a.b]). It should be mentioned that earlier work on KP, had been done by
Manakov [6a] and more recently by Fokas and Ablowitz {6b] and on the multidimensional three-wave
equation by Cornille {7a] and Kaup [7b]. KP,; and others like it depart significantly from previous work
and its study has led us to develop a general method to do inverse scattering in n spatial dimensions as we
will indicate 1n this review (see {8a.b, c)).

The concept of treating inverse scattering as a “d problem” was originally discussed by Beals and
Coifman in their study of first order svstems of differential equations [9a]. Beals and Coifman have also
recently considered multidimensional inverse scattering via 3 methods {9b).

It shouid be noted that important contributions in the studv of multidimensional inverse scattering
associated with the time-independent Schrodinger problem have been made by Faddeev [10] and Newion
{11]. In one dimension we also note the important contributions of Shabat [12a). Mikhailov {12b} and
Caudrey [12c]. Some of the work in this review is related to these studies aithough the methodology is
different.

2. Inverse scattering and ther inverse scattering transform

The method of solution by IST begins with the studyv of two compatible linear operators (Lax pairs)
(L depends on one or more “ potentials” or functions which we call u)

Le=Ar, (5)
v, =M, {(6)
connected by the compatibility condition

L~-{L.M]=0, ()

e
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when the flow is isospectral, A, = 0. (7) is the nonlinear evolution equation 1o be solved. A is a spectral
parameter. which as it turns out loses significance in spatial dimensions greater than one. L is a spatial
operator only: with tme acting as a parameter. The parametnc dependence in ume 1s what allows us to
study the question of inverse scattering separately and then after this task is completed allows us 10 solve
the relevant nonlinear equation (7). For KdV the operators are

Le—=-~u M=(47\+2u)-82£—ux. (8)

The reader can now verify that (7) vields (1). It should be noted that there are generalizations of (5)~(7}.
but we shall not be concerned with that here.

The direct (or forward) scattering problem associated with L means given a potenual. in a desired
function class, and solve for eigenfunctions corresponding 1o suitable initial or boundary conditons.
Usually, appropriate eigenfunctions are defined in terms of an integral equauon (e.g. via Green’s
functions). From the eigenfunctions scattering coefficients. eigenvalues. etc. can be calculated. Call the set
of all such data obtainable from the solution of (5) S.

The inverse problem is as follows. Given some subset S of S (i) reconstruct the eigenfunctions and the
potential: (ii) characterize the analytical. algebraic, and /or topological constraints on the datza in order to
find a potenual in the desired function class.

In recent vears significant strides forward have been made in regard to the solution of those inverse
problems motivated by the study of nonlinear evolution equations. Exampies in one dimension are

n,, n ne~j.
(1) g;n* Yy u‘”()c):ji "_L,=)\c, u(x).v(x. \)scalar [see 9c]:
-2 X
'F (ii)%i—;=i>\fc-qv, v{ix.A).g(x)eC™¥ " J=diag(J ... .. JM =g =) [see 9d].
3

In muitidimensions examples are

(iﬂ)o%*.’lr—u(x.y)u=0. o=0p+i0,, x€R". veER. A= &% 9x° [see8a. 8c.9b]:

-

(ivi ~dv~u(x)e=Av {see 10,11, 8a. 8c. 9c]:
. dr ~ . duv . . NN . ) N
(V) s=~0 L Jma—=q. o=o0z~i0,. x€R". y€R: ¢.g€C'"" J =diag(J . . .. JM
ER S ox, :
(Jr=J/ i=)) [see8b].
The inverse problem for (i) and (i) may be written 1in a compact form. Namelyv soive

la.~u_ Nx. k)=pu_(x.alk)Vix k)

on I (X is an appropnate contour 1n the complex k-plane and " 1s a funcuon depending exphaitiv on the
scattening data and a(« ) 1s problem dependent) with

u,—— J.alk) V(x. k)gvenon I,
1A -

v
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and

p _(x. k) meromorphicin k € C/=. (9)
# . (x. k) has a finite number of poles with locations specified: ,..... k. and Res, ., p_.(x. k) specified
appropnately.

In (9). w(x. k) 1s associated with an eigenfuncuion of the given operator. [t is related 10 v(x. k) by

v(x, k) =p(x. k)ebeots ki

where 6, (x. k) is a concrete phase factor which depends on the unperturbed (potential zero) operator. The
parametric dependence A = A(k) is explicitly given (chosen for convenience).

(9) is a vanant of the usual Riemann-Hilbert factorization problem. The standard situaton involves
finding u . analvtic off & without any extra parameter such as x.

Corresponding to (1) and (i1) above, the second order case is classical and has been studied by numerous
authors (a review of this appears in [1]). Although some work had been done for third order scalar
operators nevertheless it has onjv been within the past few vears that the solution to the general nth order
case has been found. It should be noted that the matrix svstem (ii) above has alsc been studied in [12a-c].

A thorough analvsis of the problems. including the case of complex diagonal elements of J appears in [3d].
To be concrete we shall given the results for the inverse problem associated with the one-dimensional

time-independent Schrodinger equation: i.e. (i) above with n =2, u(x)= ~u®(x). Let A(k)= — k-, then
the scattening equation 1s

L'u--(k3_un.=0. —x <x<ax, C=pe hT (10)

g, = 2ikp, —up=0. (11)

The relevant function ciass for u(xd1s [F (1 + xDjuldx < >. v(x. k) has solutions (Jost functions)
which we denote by

Yix. k) = u*“.’l
Glx. k) = eThx T : (12a)
~-x Clxk) = e |

X == >~ oC
Functions with “nice” analvucal properties are obtained by multiplving by a suitable exponential factor:

Nix. k)y=ye* = 1, ‘\

Y 1 r==+x \
Mixk)=oe™ = 1o et = ey (12b)
x— e
The relationship
wix ki=oix, —k) (12¢)
implies
Nix. k1=Nix. —kre " (12d)
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N Completeness of these eigenfunctions requires

X M(x. k)=a(k)N(x. k)+b(k)N(x. k).

or. using (12d).

. i Mix. k) = NP N

- —_— = N ) - . L1kx -k). 126

- 2 = Mx k)= k) et N(x. —k) (12e)

where r(k)=b(k)/a(k). The analvticity of M(x. k). N(x. k) is deduced by studving the following
integral equations:
e« \ .
M(x.ky=1+[ G_(x=x"k)ulx)M(x' k)dx'. (12f)
Y-

o«

-~ — o« —

Nixk)=1+[" G_(x=x" k)ulx)N(x" k)dx" (12g)
- -oc

_-‘ where

-

- G .(x k)=—1—/ Ly (12h)
o =\ A 2z C=$($—2k) ) -
: C_ being the contour below (= )/above (—) the singulariies ¢ =0. £ =2k inside the integral (12hy.
N G _(x.k) is analvtic for Imk 2 0 and vanishes as |k} = oc. M(x. k). N(x.k) are therefore analvtic for

Imk > 0. Im k < O respectively and tend 1o unity as jk| — =c.

The scattering coefficient a(k) is also analyvtic for Im k& > 0 and tends to unity as {k; — ¢ (this can be

: deduced from the fact that a(k)is a Wronskian of M. N ). a( k) can vanish at a finite number of locations

in the upper half plane: k=k,,.... k,. Imk > 0. Calling
M(x. k) =
N 2 V=N ). 2
wotx. k) a k) w_{x. k) (x, k) (121)
we see that (9e) is a special case of (9) where a(k)= ~k. V(x. k)= r(k)e="** The appropriate residue
statement 18
- Res (u_(x. k) =c eX* i (x.k ). (12i)
LN : :
5 ,

) C being called the normalization constants.

It 1s worthwhile noung that when no poles (1.e. no eigenvalues or boundstates) appear. then the
sotvability of (12e) follows from the work of Gohberg and Krein [13} in which they prove the existence of
uniqueness of the soiution of the corresponding Riemann-Hilbert factorizauon problem (in a genenc
sense).

p o
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For completeness we list the integral equations for the eigenfunction and potential reconstruction:

Nix. k) =e>1*x

k= k e

! .' -x

\ "o N{x) 1 < r(§YN(x.¢) '
T & - AL TEMEIE T 2k
1 ¥ f s dﬁ). (12k)

. "o N(x) 1 = Nix. '
.'\',(x)=e"“”(1— z TT‘_Z"_L[‘ r(—'g—;—__—(:—éldé} (121)
=l T e N x =2 [T N k] (12m)
uix)= ax( -1-167,. . x)—r/_xr( YN(x. k) ’ 2

The solution of the iitial value problem for suitably decaving functions u{x. k) of KdV is obtained by
noung that rik.f)=r(k.0ye* " This follows from the second linear operator M: see (6). (8). The
reconstruction of w(x. ¢ then follows from the inverse problem. In the general case. the daia Vi x. k. 1) 1n

) 9y also evolves simplv in ume (e.g. Vix. k. )= V(x. k.0)e*'*" when V.« are scalars). Schematicallv. we
[..- have:

(Direct problem) (From M operator) (From inverse problem)
-~ N N v
h u(x.0)=p _(x. k=0 = Vix. k0= Vix k.r)—= p_{x. k.t)=u{x.1)

The method of soluuon 1s what 1s usually referred to as the Inverse Scattenng Transform: IST. This
t program has been carned out for a surpnsingly large number of phvsically interesting equations in one
~ spatial dimension. In fact. the onlyv equation in one spaual dimension mentioned above that does not have
F an associated inverse probiem of the form (9) 1s the Benjamin~Ono equation (4). It shares with the KP,
equation an inverse problem of the nonlocal R-H form:

\p,—p_)ix.k)={u_\x.k’\l"(.‘(.k‘.k\dk’. {

—
(%Y
—

Next. we shall discuss the KP equation and its associated scattering operator L.

ov, =t —uix. yir=40 (14)

Note in (14} we have taken the eigenvalue A = 0 without loss of generality (by the scaling property of ).
Since the anaivsis for the generalizauon

or, =Ar—ulx yie=0 (1%

where 0 =o0p —10,. 3 =17, .. &- ¢x-. x=R" »€R. s anatural extension of that in two dimensions.
we shall discuss thus case. Scattening parameters arise in (15) by looking for a function u = ui x. v. k) where

R N 4

r=ue . 1169

ou =~ du=2ik-Tu—uu=0, D

4

and k =xg —1k.2C" We shall consider ag = 0. 5, < 0.

. - . » PO I ) . . . . . - - . . - . . - : -
PN N T o L S D R PO YR o - ST -’ T T Tt e tL
v TP LT /PP iy " e SRS S S R U T T T WU U Do, Sk SP L L SRR SR T ey ;‘x.;-\‘-,-.“,._.'_J




T TR T T T T T T T T R T T T T T e e I R N o R T ¥ Wy =~ = % X~ ¥ =% v~ v~y - .-

M.J dpiowirz ang Al Nacrman . Muitidiniensiong, noniinegr et omiion equalions dnd inverse scatiering 226

We look for a solution w(x. v. A) bounded for ali x. » and u—1 as 'k* — =. The latter condition 15 a
convenient normalization. 1f we should consider (171 for o = = 11n analogy to the KP,, scatiering problem.
we immediately notice that the dominant operator 1s the heat operator which is illposed as an iniual vajue
problem. Even though we pose a boundary problem. immediately we are led to believe that in thus case
there will be some tvpe of unusual behavior. In fact in refs. [4. 8aj it is shown that the bounded funcuon u
jor o, = 0 may be analvtic nowhere as a funtuon of k. Specifically u = u(x. y. Ag. k). In parucular p is
constructed from the following equation. Given u(x. v ) — ( sufficiently rapidly at =. the direct probiem 1s

u=1~Gluu). (18)
where
G'=Ger= f‘/’G(.r —xv= kg ki vrdx'dy (19)

The Green's funcuon G 1is obtained from

.. cnx‘:‘-r‘n) 1
Gix. v kg k) =C_, || —————4d¢tdn. C,=——. (20a)

Ul em = -2k

sign{ vy s Dt i R , ko e
= C,[etr o= =tomndgi g [ €5 = 2 kg~ ol I‘J-S}dg. {20b
. R !
where Gixj= "1 for x>0. 0 for x <0). In construcung (20) we have looked for a pounded Green's

funcuor. and have taken the Founer transform in both x and .
Taking the ¢ denvauve of (18) with respect 1o & we find 163k = i(d dkg =16 dk.

_ﬁ_L:__ﬁG(uu)_G(u_éi (3
e Ey ax -4

The arst term 1n (21115 calculated directly using the definjuon of the Green's funcuon (20).

AGluw C. - Bixr e m fre RN , - . -
= Jefre e ST kg kNS = kg VB (stéNde, (22a)
ak iOr -
where N
Ting. Ap s [fem®r ey jqu(x. v kg h1dxds. (2Zbi -
. R -
Bix. v hp ko di= a=Ili—i-i{—Kkpgh {22¢)
Ok
. . .o - , 6. -
R R T T R B e (22dh
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(20b) or on (20a) using the well-known fact

RN
_. ok 'k -k,

')=ws(k—ko). (22¢)

9 From (22) one can readily calculate du/ 8?:/, (assurmung (18) has no homogeneous solutions).

. d - C kB -
k. Tp=— == el ik OT (ke k1 £)(§ — kg )8(s(8))p(x. v € k) dE. (23)
i akj IOR: ‘ '

(23) 13 found by noung that ap/az-,, 1s a suitable superposition over a2 fundamental solution

Wi(x, y. kg, k,. &) sausfving

Wi(x. y. kg k. §) =eBxo bty GuWw). (24
Using the symmetry condition on the Green’s function.

e~ By A i DG (x, v kg, k) =G(x.y. &, k). on s(&)=0. (2%)

allows us to find

Wix, y kg k. §)=eBxrdnkibiy(y y £ k). ons(§)=0. (26)

and then (23) follows.
A special case of (23) is n =1 whereupon du/dk, depends iocally on p. For n=1. let k, = &: then (23)

reduces 10
du CX { . O! \ 180x, 1. A 1 ' 2
5;;-= Toul sgn (\kR— ;;k,}e Blxvhn ik Tlhke ki §o)n(x. v, & ky). (27
where {, = —kp —(20,/0g)k,. (27) is relevant to the solution of KP: KP;: a;=0. og = —1 (see [4]) and

KP, 6,=1. og =0 (0g <0) with the scaling k,=k,/oy (also see the discussion of the limit to the
time-dependent Schrodinger equation later in this paper).

The above discussion is entirely within the context of the direct scattering problem. However. it suggests
what the natural data mught be for this problem. We shall call T(ky. &, &) the inverse data.

The inverse problem is: given T(kg. k. §) construct u(x, 3). However. it is immediatelv transparent
that there is a serious redundancy question. Namely T(kg. k. ) is a function of 3n parameters with one
restniction (the restriction 1s due to 8(s(£))in (23): 1.e. T will be given as a function of 3n ~ 1 variables and
we wish to construct a function u(x. y) depending on n =1 variables. But for n= 1. namely for the
problem in two spatial dimensions the difficulty disappears. As (27) shows T = T(kg. k. {50 k. k;)). bence
T 1s a funcuon of two parameters as is u.

Using (23) there are numerous reconstruction formulae for w available. However, senous restncuons on
T must be imposed in order to obtain a function u depending only on x. v and vanishing at . This 1s
part of the charactenization question. i.e. which inverse data T(kg. k,. §) are “admissible”.

One set of inversion formulae for p 1s obtained from the generalized Cauchy formula

2
7]

27 k=1

1 (1) 1 ;r 0u,dl
plk) = ¢C“——d/—7uk"‘“ dig dl,. (28)
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{Another, more svmmetric inversion uses the Bochner-Martinelli formula but this is outside the scope of
the present review.) Applying this to our problem where u — 1, |k| ~ = (the first term is unity) we have

3
£ (x.y. kp. k)

1 ak/ R

Lk k)=1+— o dk! 29

p(x. v kg ky)=1-= _ff P dky dk . (29)

where we use the simplified notation ki = (kg,.... kg ..... kg ) and similarly for kj. (29) is a linear

integral equation for (using 23)) the potential is constructed from
21 0 ou . ) , ,

u(x.,$')=~;§sz?g(x.y.kg.kx)dkgdkx‘. {30)
(30} 1s obtained by taking k& — x in (18) and (29) and companing the results.

It is clear that in general the nght-hand side of (30) will be a function of kg .k, :i=1.2..... J=1

J=1. n. One possible way of characterizing admissible data would be to require T(k . k,. £) to be such

that the RHS of (30) be independent of these parameters, for all ;. Such a requirement is analogous 10
what Newton refers 1o as the “muiracle™ in the time-independent probiem (see [11]). However. in this
formulation we can go further and give conditions directly on T(kg. k. §). The importance of characteriz-
ing T(kg. ky. §) directly not only has to do with understanding on which manifolds of kg. k;. ¢ can one
hope to reconstruct the potential. but also may indicate how one could in principle measure data so as to
produce local potenuals in a stable manner.

For n > 1 the compatibility condition d°u/dk,dk, = é°u/3k 3k, (1 =j) leads to a nontrivial restriction
on 7. one which is nonlinear: -

£ (T)=N_(T). (31a)
where

] 1 48 ; ] 1 4 i \

.?,=($/,—A,.)(5}—<—f-f%’-(S,"k.,){T‘jg—{)~ (31b)

N Tk €) =/[(5,.'- kW& —¢&) - (&~ k,a)(fj—fj)}a(-‘(é'))T(kg- ki 8T8 kL §)deE.
{31c)

In fact there is a change of vanabies which allows (31) to be put in a simplified form. Without loss of
generality we may consider the equations (31) wath i = 1. (+ = 1. is obtained from : = 1 bv straightforward
manipulauon) then introduce new variables (x.w.w,)€ C""! x R” x R which parametenze the sphere
SCEN (X =(Xae---. X )

w, O nigh', w Gnpn
Aln = Z WX T - Dyl }\/k = wiX, T Tyt
12 - R
n
O Wok Opinh
k=3 wy R_C A = —wyx =~ (32)
L " 0t ! [ Ml

k-
b

3

P,

.l
<
b, -
b’ .
.l
P'

o

3

b,

BT L DU
N S P A SRR P

s avans el vans



232 M.J. Ablowitz and A.1. Nachman / Mulndimensional nonlinear evolution equations and inverse scattering

Thus for wy = 0 there is a 1~1 map: (kg. k. §) = (x, w. w,) such that

w=§~-kp, we=2k (¢-kg)/0g, (33a)
?;%"?U' (33b)
which for i=1, j=2...., n vields
g%=NU(T)(x.w,wo). J=2..... n. (34)

Again using the generalized Cauchy formula we have

NU[T]( WoW,)
1 U X

SI= T(x,w,wo)—-; =% dX'rg,dXi/:f‘(MWo): (35)
- 1T X

where &(w, wy) =F (u(x, y)) is the Fourier Transform of u(x. y) with respect to w, wy. The term &(w. wy)

- 1s the boundary value of T(x.w.w,) as x, = cc. This can be seen from the definition of T(x,w, w,) (22b)
and the fact that from (32) x , — o« implies k — oc and hence y — 1. (35) leads both to admissibility
criteria as well as reconstruction of u(x, y). Given T(kg. k;. £) one computes # by quadratures. We also
reiterate the fact that the formula (35) assumes no homogeneous solutions to (18). We conjecture [8a] that if
# 1s independent of x and ; and has suitable decay properties for large w.wy, then T 1s admissible. The
potenual 1s recovered from

ul(x. y)y=F"Halw.ow)). (36)
where #~' denotes the inverse Fourier transform. Moreover. we see that reconstruction follows purely by
quadratures given T(kg. k. &) on s(§)=0.

[t wms out that the physicallv interesting cases of the time-dependent and time-independent
Schrodinger equation in » dimensions fall out as special cases of the above result. In what follows we
discuss these cases both as limuts (reductions) of the above results and then briefly indicate how the
formulae can be derived without recourse 1o any limit.

First consider the case o — i, i.e. 6;=1, og = 0= (05 <0); kg, 7{, =k/og. Then G(x. y. kg. k) =
G (x. y. kg, kg ) (in what follows we drop the symbol ),

Gu(x.y kg ky)==1C, Sgn(,V)fe“"f“i.wfz-lku-m@()’(52 +2kg+ ki) £))dé. (37)
(37) can be directlv venified. i.e.
\ . . d o -
LG x. v kg k)=8(x)18(y). ¥= = - 21kg ¥ (38)
and hence u — u; where u, satisfies

Lur=—upy, and pg(x.v. kg k) =1~G (up, ). (29a.b)
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Thus G (x. v. k. k) provides a family of Green's functions parameterized by k; which has the parameter
entering via " boundary conditions” (i.e. through the integral equation (39b) since % depends on &, only).

As k; = zcc,

Gy(x.y kg ky)~ —iC,sgn(y) [dfe & -2hn-Omirtg( 2yt ), (40)

hence Gy (x. y. kg, ky = 2 ¢) = G{=(x, y, k. k,) where G{=)/(x, y, kg.k,) are = functions of kg .
Similarly py = L L. #{3"(x, y. kg, k;). Here k1=(k1, sk Ky k,). Then by direct calcula-
uon (altemauvc}v by limits): ‘

du . e
FEo =~ G, [t R OT, (e e 6)(8, = ki )85 (§))my (x. 3. €. k) 3, (41a)
where

Bilx.y kg ky §)=(x+2yk;)(§=kg).

Ty (ke kpo§) = [[emutrorintiun)(x, y kg ki) dxdrs s (€)= (84 k) = (kg = kp)'

(41b)
The reconstruction formula for u, is then given by
0(k,—1< 8(ki =k, ) |/ 5
' = : . __u_ oLt ’ L’ ,
po(x. y kg k) =1- ff N R I A ( akl/)(x.,\‘kR.k,)dL&dkl_,
(42)

where kp = (kg,....kg,_y, kg . kg _,.... kg ) and similarly for k{. with (41) inserted into (42). (42) can
be derived directly by making use of the analytic properues of py at k; = = (or follows by limits). To
show this by direct means note

& a , 7 -y s
f 3: dky = p(k, =+oc) y.(klx-—'——ac)=u‘"’(x._v.kk,kl)—p‘ "(x. v kgoky). (43)

Thus by projection

- s = du
p(-u(x,y.lxk.k,)al-P/-(f-rm(x.y.kk.kl)dkl : (442)
where
g{k/)

2of 4 =L * —_—
Pglkg) 27i~{_mk;—(kK:iO)dK/ (44b)
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and the usual = projectors satisfving (P~ — P7)g(kg )= g(kg ). Carrying out the integral in (43) from

—~x 10 k; and using the above boundary conditions at k; = — = vields

w(x. v kg kj)=1=P" f:\‘ %‘!dk{ -»f_‘;\%l—)dkl (45a)

=1—{ P~ iakx |dk; - fk P" l’a“ )dk1 (45b)

{with the obvious notation). {(45b) is equivalent to (42). The analogue of (31) is obtained from the

compatibility condition (alternativelv via limits)

a:# = a:“’ i L = N L
ok, ok, = ok ok, (=) LuTu=NiT). (46a)
where
d d
_yL__{(g -k )—&kX _(g"k&)—k_,']'
(46b)

Mi= =G [l =k = ) = (& = ke ) = )]s (8 ) Tubkp k€T ke 6) 6

Defining new vanables (x.w.wp).

W
1
AX“—ZW/X/R 2 2yt "

A1|=ZWJXI;' ](“:: _wlle' (47"
- W, Wi, _ W wow, _
=§:“L'XIR*T-2W:. E,’—~w‘x1n+-§_—5;:-‘ ‘/:2 .... n.
we have (taking / =1 in (46))
6T, N
=k = _2iNH[T (48)
dXx .‘[ L]
and the analogue of (35)
fix, — x| 6 -x 0]
v 1 X1 = X1 (X1 = x:
TL‘X'“'-WO)‘:/{ T l\‘ [TUx wowg ) dxr X = dlwowg).
- xr = Xr 10 xg - 10_’
(49 s
N
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Admussible data T are such that the LHS of (49) will be independent of x, and j and have appropnate

decay in w. w,. (49) can be derived directly using the fact tha hmxlv_. - o{Ty — &) 1s. as a funcuon of xpg .

the boundary value of an analytic function of xyp 1n the lower (xg — =~ ) /upper (xg = —x)
- half-plane and iending 10 zero as xz — <. The argurﬁem is identical 1o that of reconstructing u, above
(i.e. (43)~(45)). '

Next we give the results for the stationary case: i.e. u(x, v)=u(x). The methods tc obtain these
formulae follow from those of p; by reduction or alternatively can be verified directly using the same
techniques as those described above and hence will be omitted. apart from illuminating comments. The
“stationary” eigenfuncton p(x. k. k) satisfies

b (x kg k) =1+G(up,), (50)
where the Green's function is given by

| B(ktg) B~k
T2 kg - 10 £ 428 kg~ 10

Glx. kg k)= =G| e xdg. (51)

Hereafter we assume that (50) has no homogeneous solutions. By direct calculations 1t can be verified that
G, satisfies

LG (x. kg, ky)=8(x), (52a)
L=4+2ikg T (52b)

and u, satisfies
Lop=up, . (583a)
or. if ¢ (x. kg, k;)=pe*r* ¢ sausfies
(3 ~ki—ulx))g,=0. (53b)
G, is obtained from G by
o« .
G,(x. kg k)= [ Gilx.r ke kp)dy, (54,
-
where the identity

blx~r) Bl=x=»)_ Bly) _B(—y)
x—10  x~10 x—=10 x-1i0

is useful. Indeed the Green's function G(x. k. A;) turns out to be the same as that of Faddeev [10]'

d The analogue 1o (23) is now
g ——8/‘:; = —ng',C"'/‘eon-rkn-(E“Au\T's(kR_kx_g)(‘g-,—kR )8(5“- ki)S(;\']-(;— KR ))u(rikl)d;
::4 (55a)
|
.
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where

D

4 I"/l

4

Ts(kR.k,.£)=/e"""‘"““‘u(x)ps(x.kR.kx)dx. (55b)

f{.ft'

It should be remarked that the reduction of T to T, obeys

Tolkp &) =780k, "(§ = k)T, (kg ky €. (55¢)

. “; .t‘ T. -"J

The reconstruction equation for p(x. k. ky) follows directly (noting thatas k; — zcp isa + function
of kg )

p(x, vokg k)=1—-5=— )(x. y.okgpoki)dkp dki.  (56)

1 6(ky~ki)  6(ki—k) ( ap, |
imiJ kg — kg = 0 kR—-kR-rlo \m

using (55). -
Taking the restriction w,=k;*(§—kgz)=0 into account then the compatibility a=us/akxak1;=
3%,/ dky 3k, (i=j)yields

LT, =nN>(T,) onwy=0. (57a) -

where
. é E .
$,=%_(§/’kk,)m°( —3—,‘ (D7b) :

NAT) = =G, f[16 ~ ke W& - &) = (& = ke )&, - )] 867 ~ k3)

8k (& =k NT\hkp. k. & )T(8 ky £)dE. (57¢) S

The change of varniables (w, = 0)

3
b3
¥

. n
. S 1 = e - —
l‘;.‘_”,,XRE 5 - /‘/a WX,y TR k1,=zWXx~

)
’}

l' Tl i
.

: ] (58) 3
kK ¢ Tow .4 - = N
,/x= “W‘AX/‘- 51=L-“}Xjn-.—2—' s_’.: WX/R' JE e n. :‘.
gives a transformation (kg. k. §) = (x.w) from 3n = variables 10 37 — 2 vanables (note we have the -
restrictions ¢ = ki and wy=k;-(§-kg)=0 incorporated into this transformation). Thus (57)-(58) -
implies (taking / =1 in (§7)) o
o
aT, <
== =2ie N, (T,) (39) R
oX; : -
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and then by integration

Xx G(IX,I,-XX_,‘) .
T.(x. “)“[f o - XA+ 10 NLIT)(x ow)dxg dxi = a(w). (60)
. where &(w) is the Fourier Transform of u(x) with respect to w. (60) plays the role of charactenizing
suitable data T,(x.w) as well as reconstructing the potential in analogy with (35). Namely. the LHS of (60)
must be independent of x and J and have appropriate decay in w. Again we note thatlim  _ _ (7, ~ é(w))

1s as a function of xp the boundary value of an analytic funcuon in the lower (-‘-éc)/upper (— o)
half-plane and vamshmg at xg = %. This allows (60) to be obtained directly by using the same ideas
A discussed earlier.

.. Next we show how the inverse data described earlier i.e. T(kg. k. §). T (kg . k. §). T(kg. ky. §) for the
N general case and limit/reduction cases can be related 10 scatiering data. In the limit (L)/reduction (S) case
scattering theorv has a clear physical meaning. In the general case we shall define formal scattering and
show how time dependent /independent physical scattering can be recovered as special cases. Naturally one
can derive these latter results ((L).(S)) directly. Since such an analysis is essentially identical to the general
case and will be omitted. Also remark that such formulae for the time independent case was originally
denived by Faddeev [10}.

We begin by defining a “left-Volterra™ operator in terms of a Green's function.

, C -
G.ix.v. k) =—Uie(_\-)fe=*'f*<f “keorsege {61)

where k = kg + ik; and we will require o5 <0 for convergence. Then for functions u(x. v) of compact-
support in both x and » (a much wider function class is allowed in the limit/reduction cases):

pox.v.k)=1=G (up,)(x. ¥y k). (62)

The scatterning funcuon is defined by the limit v — o« of (62) (as y = —oc.pu,— 1}

po(xy k) =1~ [dgestm@-20meg g &, ), (63a)
N C" [ —rx=(f =2k E)y/0 -
S(kR.k,.$)=-o—jfe ex= ek Or/o Yk vy k)dxdy, (63b)

or. by changing vanables §{ = § — kg.

C, .

Stkp. k. ¢)=7 {{6_8"""‘“""“(11;1\)(x._v.k)dxd)'. {63¢)
where

Blx. viokg k&) =1xe(§=kg)= {8 ~ki= 21k, (&=kg))r/0. (63d)
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The eigenfunctions u and u, are related as follows:
(p=p)=GClup) = Glup V= G (u(p—p,))+(G=G, ) up). (64)

Using (20) and (61) we have

(G=G ) x. v . kg. k)= 'OC" d{cﬁ'*--‘-*a-h-“e(-s(&))ds‘ (65a)
hence

(6= G ) un)= [eBxrmntio@(~5($)Flkg. ki §) dé, (65b)
where

Tlhko ki §)= - %ffe'é“"""R"‘"‘)(up)(x.y‘kR,kl)dxdy. (65c¢)

Note when s(§)= (¢ = kgo,/0g)* = (k;~ k0,/0g)" = 0. Then B(x.y. kg. ki. &)= B(x.y kg.ky. §) and
T(kp ok &§)=T(kg. k. §) (see 22).
Then emploving the symmetry condition on G,

e B v An M BG (x y kg k) =G, (x. v, £ ky) (66)

(which 1s verified directly;. we have from (64)-(66)

(b= B xe v kg kp) = [ an (= s(6)) Tk ke Juy(x. y 8 k;) 8", (67)

Multiply (67) by (C,/0)u(x. y)e ™ Bt=2-Ax-k1-8 and take [/dxd y. Then we find with the definitions of 7. §
(63.65)

A

T(kg. kl.E)+.§(kR.kl.£)—/@(-s(£’)) (kp. ki &)S(&" ki £)dg = 0. (68)

(68) vields T(kR. k;. §) given the “scattering data” §(kR. ki &)
The limit/reduction cases now follow immediately. For 6 = 1,05 <0

B—Bi(xy ke §)=i{xe(§=kg) =€ = ki)y). (69a)
S—S$ (kg. &)= —icnffe_éi"""‘“'E’(ug%)(x. v okg)dxdy. (69b)

Note in (69a) BL(x. Vokg 8y=B(x. vikpg k EY=1x=2vk) (&= kg) on the “shell™ s (§)=({~+
k) =(kg+kp)? =0 In (69b) u* is defined bv

\

pEix. v kgl =1+ Glluub ) (x. v kg). (69c¢)

-
-------
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where

GL(x. vy kg)= —iC,,G(y)fjc g1 E-iE - 2ty g g (69d)
ub is not a function of k, hence neither is S= f(kR. ). Simulariy:

P Flhg k) =i, [[em s ined(ug)(x, y. kg ky)dxdy. (69e)
Thus we have the scattering relationship

Tk ko 8)+ S (kp. §) = [O{ =5 (€))TL kg k1. §)SL (8. €)dg =0, (70)

Again given the scattering function fL(kR, £) in principle we can obtain T, (kg. k. ) from (70) and this
equals T (kg. k. §) (see (41)) on s_(£)= 0. For the uime independent (reduction) problem we make the
observation

['x e“"f

S ——dt=G_(x. k). 7
) T ok Ok el

Gix.kp)= [~ GH(x.3.kp)dy= -G,

Namely G$(x. k is identical to the standard outgoing Green's function (which is also analytic in the upper
half s = |kg| plane. Thus

o (x kg)=p_(x. kg). (71b)

Using je™ "¢ =% dv = 228(¢7 = k3 ). we have the identifications when u(x. y)= u(x)

S (kg &)= ~C,_\8(¢*=kg)Alkg.£). (T1c)

T (kg ki 8)=1C,_ 88 = ki) T, (kg . k. &), (71d)
where

A(kR.f)=/e""“""(uu,)(x,kR)dx (Tle)

and 7,(kg. ky. §) 1s defined by (55b). Then (70) reduces 1o

T, kp. ky §) = Alkg. §)=iC,_; [8(k (kg =& N8(£7 = k3 I T.(kg. k;. £ 4§ §)dE =0.
(72)

on §° = kg. (T2) was obtained by Faddeev [10] n hus studv of the ume-dependent Schrédinger problem
and serves to relate the phvsical outgoing scattering amplitude 1o the “inverse data™ T.(hg. k. &) (also
called the nonphvsical scattenng amplitude). We reiterate the fact that the denvauon above could be
cammed out directly on the nme-dependent, independent Schrodinger operator without any recourse 1o
generalized scattering” as we have introduced 1t here.
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3. Concluding remarks

s s w
S P I ]

(1) T(kg. k. §) (and Ty (kg k. §). T(kg. k. §)) satisfv a quadratically nonlinear differential-integral
equation when n > 1; i.e. (31) (and (46). (57)). The fundamental feature of this equation is that it leads 10
characterization /admussibility criteria for the inverse data. However at the same ume it precludes the
existence of a simple ume evolution of the data i.e. (-, 1) = T(-.0)e’“". Such simple flows are associated
with the KdV, KP etw. equations. Hence this result provides still another explanation for why local
nonlinear evolution equations have not been associated with the multidimensional scattering problem (14).

(1) Eqgs. (35) and its humt/reduction cases (49). (60} provide characterization /admissibilitv criteria for
the mverse data and a reconstruction formulae for the potenual in the same formula. Even for the classical
probiem of the time-independent Schrédinger operator (cf. [10. 11} our egs. (60) vield some novel
information: it shows that Faddeev’'s characterization (with which it is essenuallv equivalent cf. [8c])
naturally anses as an integral equation for 7. a somewhat more convenient condition to venfy than his
analyticity requirement: it also shows that once T is known the potential can be found purely by
quadratures. The scattering data are related to the inverse data via the formulae (68). (70). (72). For (70),
(72) the scattering amplitudes are physically relevant and. in principle. measurable. It is an open and
important problem regarding how one could measure the scatiering amplitude and at the same ume ensure
that the inverse data resulting from (70). (72) will still be admussible even when small errors are present.
Namely. how can one adjust errors in data in order to ensure admissibility.

(111) Although here we have discussed the analysis for the generalized Schrodinger scattering problem. the
algonthm also works other operators in a straightforward way. In [8b] the scattering problem (see (v) in the
introductuon):

'y e

(iv)

e, =03 Ju, =glx. y)e.

[

with 0 =0y +i0;, xER". yER, ¢ an N X N matrix. and J, = diag(J,..... J¥). Again results analogous
to (31) follow; i.e. the scattering data satisfies a nonlinear equation. On the other hand. (iv) is one of the
few operators that has a compatible time evolution operator and hence a Lax pair describing a nonlinear
evolution equation in multudimensions: the so-called N-wave interaction equation. But the N-wave
equations can hold only if certain restrictions are put on J/: namely that the vectors J'= (J;. Ji..... J))
are all colinear. In this case the coefficient of the nonlinear term in the equauion for T vamshes - i.e. the
analogy to (31) is now purefy linear and it allows a simpie flow in time and the N-wave equauon follows
and is solvable by IST. Nevertheless. despite the fact that the N-wave equanion 1s formally multidimen-
sional. new variables mav be introduced to reduce the problem to two spaual dimensions. The colineanty
of the vectors J' allows a reduction to three spatial dimensions [8b] and the introduction of appropnate
charactenstic coordinates further reduces the N-wave equation down to two spatiai dimensions [14]. Apart
from this special case the analvsis suggests there will not be other local noniinear evolution equations
compatible with (iv) (see aiso [15]).

(v) Prototvpe operators such as those discussed in this paper provide a convenent tesitng ground for the
development of scattening (and also IST) theones which one hopes can aiso be appied to other phyvsicailhy
interesting models.
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NOTE ON THE INVERSE PROBLEM FOR A CLASS OF FIRST
ORDER MULTIDIMENSIONAL SYSTEMS

A.1. Nachman*, A.S. Fokas] and M.J, Ab]ouitz]

ABSTRACT. The inverse problem for 2 multidimensional system of
first order differential equations 15 considered The o method-
ology is employed and integral equations are developed for which
the potential may be reconstructed.

In recent years there has been substantial interest in tngc study of: (a)
inverse scattering problems for appropriately dec2ying potentials {i.e. given
suitable scattering data reconstruct tne potentiai a(x}); (b) the initial
value proplem of certain pnysically important nonlinear evolution equations
{i.e. given a{x,0) find a{x,t)). In this note we shail consider the irverse
oroblem associated with

N
lo I3

# 12

Jv ® v, (1)
L
where q(xo.x) is an N x N matrix-valueg off-giagunal function in k"’] and

Ji are constant rea) diagonal N x N matrices (we denote the diagonal entries
1 N .
of Ji by JO,....J:). wWe note that the methods presented here can be easily
extended to the system .+ = J
- X - £5x,
0 £=1 i
becomes the linear eigenvalue problem associated with the so called N wave-

* Qy, O = Cp¥ic,, which as oy - 0

interaction equation in n+l spatia} dimensions {see [1]). Associatec with
(1) is a nonlinear evolution eguation (a complexified form of the N-wave equa-
tion) which is in a sense iliposed. HNevertnreiess (1) provides a natural scat-
tering system to study with the methods at our disposal.

Using the transformation w(xo.x,k)=u(x0.x.k)exo(i:ki(xi-ixodi)); ke,

we may alternatively consider the system
n
+ I (idgu

v -kl el o 2)
Xy ey ke

X

tquations {1), (2) are natural extensicns af well xnown proplems:
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i) In one spatial dimension, i.e. n=0, (1) would correspond to

wxo s ikdy = glxgly, = <xg < a (3}
The transformation w(xo,k) = u(xo,k)e'ikao. k ¢ § leads to the system of

differential equations

e+ kfa] = au 14)
0

The function u(xo,k) has desirable analytic properties in k, provided that
q is 1n an appropriate space. Utilization of these analytic properties leads
to the formulation of 2 Riemann-Hilbert (RH) probiem for the solution of the
inverse problem associated with {4). The 2 x 2 case has been studied in [2],
{3]; it can be used to solve the initial value problem of the nonlinear
Schrodinger, Sine-Gordon, and modified Korteweg-deVries eguation, The 3 x 3
case was studied in [4]}; it can be used to solve the initial value problem of
the 3 wave interaction (2 review of the above work appears in [5]). Recently
the N x N case was studied by a number of authors and in 2 completely rigorous
manner by Beals and Coifman [6,7].

i1)  In two spatial dimensions {i.e. n=l} equations (1) and (2} were studied
in [8]. The inverse problem was formulated and formally soived in terms of a
DBAR (%) problem (2 © problem generalizes the notion of a RH probiem). The
2 x 2 case of this inverse problem was used t0 solve the initial vaiuve problem
of certain nonlinear evolution equations in twd spatial and one temporal dimen-
cion: the Modified Kadomtsev-Petviashvili [I (MKPII), an¢ Davey-Stewartson I}
(BS11) egquation. The hyperpoiic analogs of (1), (2) (i.e. Jz - idz)) in two
spatial dimensions (i.e. n=1) was studied in [9]. The inverse problem in
this case was adequately treate¢ via a RH problem; it was used to solve the
inttial value problem of the N wave interaction, MKP! and DSI.

The solution of the inverse probiem associateq with (2) has two aspects:
(a) develop a formalism such that given appropriate inverse gata TTJ(k.A) one
may reconstruct the potential q(xo.x}. (b) It turns out that T‘J(k.l) de-
pends on 3n-1 parameters while the potential depends only on n+l. Thus one
needs a characterization equation that restricts the scattering data. In this
note we oniy consider (a) above by extending the method of [6,10], question (b)
is considered in [1].

In component form equation (4} is written as:

TIREIEACIRS AL R L R P P (s)
0 t=1 3
Tne soecific eigenfunctions we shall work with are defined by the integral
equations:
Loe D Blay) (62)

e e I
AT e T R .
w2 A AR AL et et

- e T - o B - . N - . B
Atdadaiod adad ab o d oo s 2 03 0" o N . Lt . S - ct - Y N
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.

or ., §
ij ! i3 ij M

W Cngrak)=ggg ¢ )RJ,M 6 (xgyguxey kI alyg oy ulygy k) Jaycay  (6b) g
where &,, is the usual Kronecker delta function. The Green's function sat- :f

isfies: (LG)‘j = é(xo-yold(x—y) and is given by:

.4 ‘s n Ji

‘s sgn(Jy) . 13 n it

G’J(xo.yo.k) . 1‘ ela (xo,x.k)izzé(xl ST x‘)‘
Zﬂi(x1~iJ] xo) 1

"

where B n . ] xokp
aVxgenik) = () - Wlxghy - ) (1)
b=l 1oy

{7) is obtained by looking for a Fourier representation of the Green's function

whereby one finds:
{xgh*x-E)
daodg. (8)

i} « oot 3
G (xo.x.k) (25)“*‘ ] n ; p 3
ao*izf][(dlapkg(% - 3]

{7) is then calculated by using:

iEx s aas
g_ia'?ﬁ? dE = 2mi sgn{x)e” 3HIDIX g )
(c+ig)e, . . san{c) (c+id)A/_, ¢ # 0D
jcf<A e dg eyl <

where the heaviside function is defined by: &(x) = {1, x>0; x, x<0}. We next

Cow Lara L8/ , 3
show that 3“Jaip (where a/BKp » 2{ °kaR*‘ 3kpi)) can be expressed in terms -
of . From (6a) we have N

_a%_ - 9‘.6"(01:) + 5(9‘}‘:-) (9) ::
k E
3 P ka p .

ang by direct calculation

g d.a x A
B v (BB (xy + 5’;- ' (10a)
2k
p

.

.

i P
- ah n 1873 (xn ek ko)
: .- %—&——Ln ( . sz 9! X e ° da (105)
{2n) Ir =1
;} where n
) i3 iJ
g (X "vkvx) ta (’\ |‘vk) * T X A, .
0 0 BRI

Defining the scattering data:

0 R .-
PN AR LIAN
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.‘
L
P -i8 (J -y-k.x) 3
ko= e 70 (aw) Ity k)aygey an 9
R ."
(9) may be written in the form:
i j 1]
o () - 32) n 1879 (xguxokod) g, N
(B (g xk) = - g PP ( » 60T 3hxpe 0 (k) an -
%, ¢ e IR
U xoy xe AR =
* 6 " (xg=yqsx-y.k){a v ) ygey k)dygdy. (12)
P
In order to express au/aip in terms of u we decompose su/at'cp into fundamental
n -
X - v .
matrices M . (xq.x.k,}) on 5 I, v 0
AUV -
e o1E T (Xgux,k.2) & =
MW.(xo.x.k,)‘) e 0 EW. + G(qMW.)(xo.x,k) (13) -
where the elementary matrix Euv has components: .
i s vei, v'sj .
(£, = :
0 otherwise .
Hence once we have M, then we have au/aip via:
n (Jv-Jvl) n L v’ . B
2 (rgxkle T (- P [z e ok I e .
3kp v,v' =l {2n) R 2=1 W -
+ 6(q -a'_L)(xo.x.k) (143} oA
ok .
p -..
and hence
. n (JV-JVI) , n . -
B r e [ S T G gk a. (1) !
3k, vov'el ()" JR" v
From (14) it is clear that the only nontrivial combinations come from columns X
g ity o
of (au/sk )Y such that )=v'. Letting (n )70 = (M ) 3e"'8 J. we have N
p 2 vl -
. VM .
N . ! =18V (X X,k oA) -
(nyj) " (xgonik) = &+ jgn®) e *o x r
ri 167 (y 0y okai) r3 :
x 67 {xg-ygex-y.k)e 0 (Qr.vj) {ygeyk)dyqay (15) ;
The fact that the Greens function admits the following symmetry condition: "
: uj 7
=18 (ko XokyA) s X n 5.
e ¢ 87 (xx,k) ® 8™V (0K (k). on T 0¥, =0, (16a)
0 0 L 7
where :‘
N
l' X

.
-~
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sun Ji A . R i fyi 2 v ’
k (k.k)=(3; kop? i'kiz)zul,...,n' with X, satisfying 5 I, (16b)
1

(16b) immediately gives:
(ny ™ (xgexak) = W™ (xgux ¥ (1))

whereupon from {14) we have

(3" n . 18 (x7,%, k2 )
Lfrgxik) L (- ‘g)—f’-—ﬂn—J A 80 C T T (ke "o x
3y vyv! (2m) R g=)
x u(xo.x.i““'(k.x))sw. . (17)

1t should be noted that {16a) is suggested by the transformation between
bounded eigenfunctions of (3). To see this explicitly, note that if y i3 a
solution of (3) then so 1is wEvv.. and therefore the function v(xo,x,k) t
wva. exa(iikl(xl-ixodz)) satisfies (4). But since the function
u(xo.x,n)exp(iEhi(xi-ixodl)) also satisfies (4) we have the transformation law:

. n . .0 .
122 “n(*n“‘odz) -1151 ki(xi-xxodz)
v(xo.x.t) e u(xo.x.h)e E e (18)
For boundedness we require:
n +
I - v v .
Re {4 jL:1[(n£~k2)x1-(hlJ,L-li,t )ixgl) = 0. (19}
hence: Jv‘
= AV\JI t 3 __9:_ M
e L T S T (20a)
2
for any gy on
n
S WA (200)
2= £72

Finally the reconstruction is effected by inverting 3u one variable at a time:

3
| si;(xe.x.kI, Sokp)
ulxgexak) s 1+ = )L -

R

...ké..
—

p kD

dkdekp1 A {an

and using (17) to obtain a linear integra) equation for . Asymptotically, as
kpam(ﬂ)ﬁﬂu

VI3 . , '
ual+ x }J §f; (xo.x.k1.....ko,...,kn)dkpkdkp, . (22)
On the other hand substituting the asymptotic expansion ’
1 (1)
unl + " + ..
&

nto (4) gives the relation:
TR
RTINS

FREEE

Y * . e e oa .
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from which we have the formula:

alxgex) = & (”—L R s } (23)
D

with (17) used in (23).

Formuiae (17), (21), (23) can be used for the reconstruction of q(xo.x).
At this point one needs to show that: (a) q(xo.x) given by (23) is independ-
ent of k]..... p=1 p+1""'kn‘ {(b) the same q(xo.x) is found regardiess of
which inversion formula is used (p=1,...,n): (¢} there exists a restriction on
the scattering data T J(k. A), wnich has 3n-) parameters whereas q(xo,x) has
only n+1. It can be easily shown that (i), {ii) are equivalent. Furthermore
there exists a characterization equation restricting the scattering data T J
this equation is given in 1]
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Nonlinear evolution equations associated with a Riemann~Hilbert scattering

probiem
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In an earlier paper nonlinear evolution equations associated with a Riemann-Hilbert scattering
problem, which reduces, in an appropriate limit, to the Zakharov-Shabat-AKNS scattering
problem, were considered. Here we discuss certain necessary constraints associated with the
scattering problem and their impact upon the associated evolution equations. Moreover, the
direct linearization of the nonlinear evolution equations and an algorithm to construct an

N-soliton solution are given.

1. INTRODUCTION

The inverse spectral for scattering} transform (IST)
method 1s a well-established technique to solve and investi-
gate certain nonlinear partial differential equations of evolu-
tion type, a number of which are physically relevant.’

Attention has been recently given to the intermediate
long wave (ILW) equation®~" because it brings into the field
some novelty: that is, it is an integrodifferential, rather than
purely differential. noniinear equation, that is, integrable via
a spectral problem based on a differential Riemann-Hilbert
(RH) boundary value problem rather than an ordinary dif-
ferential equation. Moreover, the ILW eguation depends on
a parameter which we call 7, in such a way as to coincide, as
7 vanishes, with the Korteweg—de Vries (KdV} equation,®
and. as n goes to infinity, with the Benjamin—-Ono equa-
tion.*!!

In analogy with the well-known connection between the
Korteweg—de Vries equation and the modified Korteweg—
de Vnes equation, a modified ILW equation (whose 7—0
limit s the modified KdV equation) has also been introduced
and investigated.'>"?

Further progress in this direction has been made by
extending'“ the class of intermediate-type long-wave equa-
tions, and by introducing'*'® an intermediate version of the
Kadomtsev—Petviashvili equation'’ (whose 7—0 limit is of
course the Kadomtsev-Petviashvili equation).

More recently,’® a class of matrix nonlinear integral
evolution equations was generated through the following
2X 2 matrix spectral problem:

¥ x2) = Gx2wT(xz), xeR, (1a)
Gixzi=] + 20, - Ulx), (1b)

where / is the identity matrix, o, = (; °, ), 2z plays the role
of spectral parameter, and U (x) is a icomplex) z-independent
potential function.

Given the matnx function U’ (x]. (1) defines a homogen-
eous RH boundary value problem on a strip of the complex x
plane. The matrices ¢ =x.z) are the boundary values of a
function ¥ 1x.z) holomorphic in the horizontal strip between
Imx=0andImx=7n:

YT ixzi=him Yix - i), xeR, {2a)

»i0

* Permanent address: Dipartimento di Fisica, Universita di Roma [, 00185
Roma. ltaiy.
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Y~ (xz)=lm ¥ (x + iy.2}, xeR. (2b)
»n
It turns out that ¥ (x,z) can be written as

¥(xz)=exp[ — lf(zlx](—L f- coth[-’z-(x' —xl]
2nJ-. /]

Xh(x'zdx + const), O<lmx<m, {3)
where
exp{n{iz)] =1+ zoy and 4 (xz), defined by
hixz)= — (I +zo,)" ' exp[ié zix ] Ux¥™ixz) (&)

is Holder continuous on xeR and satisfies the condition
{f=° _h{xzidx| < . Moreover, formula (3) implies the fol-
lowing periodicity condition:

Y7 (x.2) = (EY ™ )x,2), (Sa)
where £ = explin 4, ) is the formal shift operator
(Ef)ix) = flx + ). (Sb)

It was shown in Ref. 18 that the linear problem (1) and
the associated class of evolution equations reduce, in the lim-
it 7—0, to the generalized Zakharov-Shabat-AKNS scat-
tering problem'® and to the associated class of nonlinear evo-
lution equations.'®*° Moreover, for the class of nonlinear
equations associated with (1), an infinite family of conserva-
tion laws was derived and only elementary properties of the
spectral problem were essential for that derivation. In fact,
the emphasis in Ref. 18 was mainly on the novel nonlinear
evolution equations, such as an intermediate version of the
nonlinear Schrodinger equation, and on their associated Lax
pair.

In this paper we present new results concerning the RH
boundary value problem {1} and the class of evolution equa-
tions associated with it.

il. THE BASIS CONSTRAINTS

In the theory of matrix RH problems*' of the type (1) an
important role is played by the determinant of G (x,z). In our
case
detGixzi=1 -2 —ztrfo,Ulx)) + tr Ulx) + det Utx..

16)

All the results of this paper are derived when the potential

matrix U(x) is subjected to the following two scalar con-
straints:

trio,U(x)) = 0. {(Tai
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tr Uixl +det Uixi =0, (7o)
or equivalently

Uixi= 1 =-Q°x} =1+ Qlx), (8)

where Q (x| is the off-diagonal part of U (x). In this case the
determinant of G (x| takes the particularly simple form

det Gixsl=1 -2, (9}

independent of x with the following important conse-
quences.

i1 The matrix G jx.z} 1s invertible for every x€R; thisis a
necessary condition for the solvability of (1).

(i1 The total index « of the matrix RH problem (1} 1s
2ero, since

x = (2717 arg(det G(x.2))] - = (10|

where {8 (x))% _ =0lxc)—8{~ .

Then an important theorem due to Gohberg and
Krein** shows that “generically” the two partial indices «,
K- ix = K, + &1 are both zero. This fact guarantees the exis-
tence and uniqueness of a bounded fundamental matnx
¥ (x .21 associated with (1).

1il. THE REDUCED CLASS OF EVOLUTION EQUATIONS

The existence and uniqueness of bounded solutions of
.11 can be used in the construction of the IST method for the
class of evoiution equations introduced in Ref. 18, if and only
if the constraints {7\ are compatible with the evolution equa-
tions themselves. It will be shown in the following that this is
indeed the case. Hence the constraints {7}, introduced as re-
quirements for the solvability of (1}, are in fact a reduction of
the class of equations introduced in Ref. 18 to the following
class of matrix nonlinear evolution equations:

0, =10, ARl
where

LF=0,0\1 = Q- ZF~iQZ ~QF)/\V+ Q7
(12}
Fis off-diagonal. vy is an arbitrary polynomial in y, and
|§'f1:x1—=-—1— ’ dy’smh[iiy ~Xx)
VI e

-1
} S, (13al

. | T . -

& T fiixi=m - — , dy coth{—ty — x1if(vi. (13b
- w Ui

In order to show that (8! is a reduction for the class of

evolution equations assoclated with t 1}, one has to show that

the set of the matnices L' satisfving (81 is closed with respect

tc the elementary deformations &L such that
Siv= = B =y = Namely. one has to prove that if U 1x) satis-
fies '8 then
UM =2,1=Q° 71080 -6Q. 14
In Ref 18 11 was shown that the elementary deforma-
tions SU'" . such that = = B = ¢ =, are given by

U7 =b i ((E= 1L o] -~ U= (L7 U] 115
with

B-ixzi=b, N L "ow b,

oy

arbitrary constants.

16
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where L "o, defined in Ref. 18, is wnitten here in the follow-
ing more convenient form:
Loy=— &'+ WF, - {i& - 1\G,, (17)

in terms of the diagonal and off-diagonal matrices F, (xi and
G, x), respectively. which are constructed through the fol-
lowing recursion relations:

Fo_i= =0l = UJF, «}{ZG,.Q1-1[G..Q]))
i18a)
G,.. = o4iF.Q] — /[ ZF,Q]
(W2 ZG,,1 + Ugl -i[G,,U.]), (18b)
F,=0 G, =20, (18¢
where [, ] and | , ] are the usual commutator and anticom-
mutator between matrices and U, is the diagonal part of U
The class of evolution equations is obtained by replacing
sU™/b, by U,.
Using Egs. (15}, {17), and {8), one can show that
SU™ ~ 1‘2\‘T;7)—1Q,6Q|m! _ 6qu

Qfr F) —_

- q'\1-‘Q'
2\’1+Q‘

x(ﬂ —2—-_1—%—6?[@6,,]). (191

Moreover. if [8) holds, one can prove by induction that
the recursion equations (181 decouple in the following way:

F,=2T~07""'[@.G.]. (20a!

G,., =2G,. G =20 {20b)
Then, from (191 and (20a|. one immediately gets

UM =2 1=0°1"10.60"1 +6Q™. (21

From 1151, {171 and 20} one finallv obtains the evolution
equauons!!liand from (16,117, and (20 one gets the corre-
sponding time evolution of function ¢,

voo= Z ( §' Lo, + :“a;)d", (22)
2 \,TH
where
Lioy= —iZ "= W1 =097 [@"'Q])
-ug -1 Q 23

and the polynomal »y), introduced in (11}, is taken to be
rivi=a,y”.

The first three equations of the class 111) are (see Ref. 181
the following:

1i1 an intermediate wave equation

u—1 v
mye= —dcy. U= < P ) pER,
v u-—1
i24al
t,=ol=ptn S u=\1-prr,

(ilr an intermediate nonlinear Schrodinger equation

- k-1 ipv'*
Wy = icy. L’=( ) pER.
V‘V : \ u—1
——— ———— 24b)
e, ~cf\] —pu LNl —p S ‘
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~ oS T'Re(y* Z )] =0,
u=yl—pis
(iiii an intermediate modified KdV equation

) ., u-—1 v
wi=icy. LU =< P >, PER,
v u-~-1
L= —prr Z W =prr LT = pr" G o ~ v v),
u=\1-pr. {24¢)

Taking the n—0 limit of Egs. {24aj-{24¢c) one obtains
the linear wave equation, the nonlinear Schrodinger equa-
tion. and the modified KdV equation, respectively.

The limit 7—c can be immediately performed,'® re-
placing 2 and & ~' by H and — H, respectively, where

Hx=— [ dyy -2 (25)
T J+w
1s the Hilbert transform. We conclude this section by notic-
ing that Eq. (24a' can be written in the following simple and
suggestive form:

Z7'6, =csinf, 6=26(x,1), (26)

where vix.r) =isin 8(x.7). In the limit 7—o Egs. (26) be-
come

HO, = —csin 6, 27

which we refer to as the sine-Hilbert equation, in analogy
with the sine-Gordon equation 6, sin 6.

IV. THE DIRECT LINEARIZATION

Postponing to a separate paper the presentation of the
IST method for the solution of the Cauchy problem associat-
ed with Eq. {11}, we now present the direc: linearization
:DL1**2* for the class (11}

The DL 1s an aigebraic approach based on the existence
of a linear integral equation which provides a large class of
soiutions of the evolution equations (11:.

Proposition: Let u = 1x,:.21 be the solutions of the integral
equations

LAz

[T S (/.4 Six,t2\R =ixas =/ (28

o1 MR
where / and d/ iz} are an arbitrary contour and measure
R 2ixizi=vf x4 2 YUFE (x.02)) 7
A1z arbutrary, {29}
and (¢& (x.r2), Uix.z)) 1s a given solution of (1} and (22|
iwhere, of course, ¢ and U are replaced by ¥, and Up). As-
suming that the homogeneous version of (28! has only the
tnivial solution, then the matrices ¢ = . defined through
UTox = TS XL 30

solve Eq. ' 1. 1f the potential L'ix.711s given by

Utxiti= Ugixat 1 =~ | [u~x121R Tix.tzio,
ol

~ oW xR Tixa2)dsoz. 3h

The proof1s direct and as in the spint of the method as 1t was
introduced 1n Ref. 13, the constructive procedure used to
obtain Egs. 1291 and (311 is illustrated in detail in Ref. 24.
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V. N-SOLITON SOLUTION
The A-soliton solution for the class (11) can be obtained
by serting Uglx,t) =0 {(and then Yo [x,4,2)
=exp[ - i§2ix + (@, /2120yt ]),
Al =8, 08— 1)Imz) {32a)
[8(x) is the usual step function), and
N
> ¢ébz—z), Imz>0 Imz>0,

Jm ]

dA (2)= N
~ Y5 8lz—3%), ImZ <0, Imz<O

J=1

{32bj

In this case Eq. {28) reduces to a 2N th-order algebraic sys-
tem; in particular, if ¥ = 1 we have the following one-soliton
solution:

U x2) = Uylx,t ) = F, — z,)sinh [ glk, — k))/d (x,),
(33a)

uUplxr)= F,e"'-“ = *1[coshink je = *-*!
= cosh(nkje ~*-*')/d (x,1), (33b)

Uy ix.2 ) = c,e =™ = "1{cosh(nk,je®-*

~ coshink, - /d {x,t ), (33¢)
where
Z,=z(k,) = tanipk,j, z,=zk,) = tan(nk,), (34a
d (x,s )=cosh[n(k, — k)] + cosh[&_(k,) — d_ik,)],
(34b)
6 lkl=2kx —a,lzk))'t =y, (34c)
—¢,8, /12, = 3, P=mer = e =K. (34d)

and &, =} Imik, — k) and k, =l Re(k, — k,) satisfy the ine-
quality

ki ~k% —iw/2nk, <Q. (35)
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Abstract

The generalized wave equation and generalized Sine-Gordon equations are
known to be natural multidimensional differential geometric generalizations
of the classical two dimensional versions. In this paper we associate a system
of linear differential equations with these equations and show how the direct
and inverse problems can be solved for appropriately decaying data on suitable

lines. An "jnitia]-boundary value" problem is solved for these equations.
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In 1967 Gardner, Greene, Kruskal and Mjura [1] discovered that the Cauchy

problem, with suitably decaying initial data on the line, associated with the
Korteweg-deVries (KdV) equation could be solved by making use of ideas from the
theory of scattering/inverse scattering. Subsegquently a number of nonlinear
equations of physical interest have been solved by variants of this method,

often referred to as the Inverse Scattering Transform (I.S.T.). Accounts of
these techniques, associated algebraic structure and amenable nonlinear equations
can be found in texts on th s subject (see for example [2]).

An equation which fits into this framework is the Sine-Gordon equation:

Upp = Uy = % sin u = 0. (1.1)

The Sine-Gordon equation is of interest to physicists and'mathematicians.

t was first solved by 1.S.7. in [3], In physics it arises in the study of
Josephson junctions, particle physics, stability of fluid motions etc. In
mathematics it has arisen classically in the study of differential geometry.

In this paper we will describe a method which enables us to carry out the I.S.7.
for certain nonlinear n dimensiornai generalizations of the Sine-Gordon and wave

equations (¢ = 0) which arise in the study of differential goemetry.

y

Originally the Sine-Gordon equation was derived in the study of surfaces of 3
constant negative curvature contained in Euclidean space R3. There is an 2
intimate connection between such surfaces and solutions of the equation. Indeed 5?
in 1875 Backlund [4] considered the following. Let M and M be surfaces in B i
and i:M-M be a diffeomorphism such that for any point p in M and corresponding ii

paint p = i(p) one has the following.




L’ LR, R

PP L -

(a) The line determined by p, and p is tangent to M and M at p ancd p

respectively;

(b) the distance d(p,p) = r>0 is a constant independent of p;

(c) the angle between the normal vectors N(p) and N(p) to the surfaces is
a constant & independent of p.

Backlund proved that under these conditions the surfaces M and M have
constant Gaussian curvature « = < = - sinze/r2 which can be normalized to be
-1. Moreover he showed that given any surface M € R3 with curvature x = -]
there exists a two parameter family of surfaces M with curvature < = -1
related to M by diffeomorphisms which satisfy (a)-(c).

The analytic interpretation of these results originated in what is now
called a Bdcklund transformation, which provides new solutions to the Sine-
Gordon equation from a given one. Later Bianchi [5] obtained a permutability
theorem for surfaces which provides superposition formulae for the Sine-Gordon
equation.

Motivated in part by the work of [6] the natural geometric generalizations
of these results were obtained in [7,8] by considering hyperbolic (constant

sectional curvature equal to -1) n-dimensional submanifolds M" of the Euclidean

R 2n-1.

Space The geometric results for hyperbolic manifolds M" contained in

Flzn'] were extended [9] to manifolds M" of constant sectional curvature i<l

Zn-] H2n‘] ).

(resp. x<-1) contained in the unit spheres S (resp. hyperbolic space
In particular, the zero-curvature submanifolds of the unit sphere correspond
to solutions of a generalized wave equation (GWE) which is a homogeneous version
of the generalized Sine-Gordon equation (GSGE) associated with embeddings in

Euclidean space.
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The higner dimensional version of 3acklund's results takes the following form:

dX + KA = A - X B (1.2)
whera
no3X
X &
J
Aij = si(z) a3 dxj
Jaq. 3aq.
e _ LR i :ll dx, 1s i, j < n (1.3)
13 ay, 3% Iooagy g

nxn
R

and a = faij} < (1.2-1.3) reduce to the Backlund transformation for the

generalized Sine-Gordon equation (GSGE) when

3.(z2) = (2°

; +H2351-1)}/,, (1.4)

and for the generalized wave equation (GWE) when

3,(2) = - (1290, 2 3z (1.5)

The compatibility condition required for the existence of solutions to these
8acklund transformations results in a system of second order partial differential

equations for an orthogonal nxn matrix a = in (1.2) which is a function of

caLsl
1]

n incependent variables a a(x1,x2,~—-xn). The equation has the form.

:)Xi a-‘] 9X1- ij aU an
3a4. 3a..
PSSR Rt b Rpuinl b RPN Y
k#i,J 2. 2 Xy X RERRN
3 ! aa1i1k 1 By Ry oy
X (a X ) o= 3 ~ TRAR I distinct
Kk 13 77 k"1 7k 77
3a. a. ja
_«‘LE' = ! ~]k ’ 1fk’ (‘ '6)

....................
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where <=1 for the GSGE and e=0 for the GWE.

We observe that when n=2 and ¢=1 (GSGE), the orthogonal matrix a = {aij}:

u T
cos 5 sin
2 = 2 z SNIRG

=sin % cos %
for the function u=u(x,t) reduces the GSGE to the classical Sine-Gordon equation
(1.1). We note also that if the parameter z in (1.2) is'given by z=tan 8/2 then 8§ is
the constant in Bicklund's statement (c) above. On the other hand when n=2 and
e=0, then with (1.7) the GWE reduces to the wave equation (1.1) with «=0. When

n>3 the generalization of the wave equation discussed here is nonlinear. A

Backlund transformation and a superposition formula for the GWE was obtained in [9].
The B8icklund transformations (1.2) described above, are in fact matrix

Riccati equations. Linearizations of such a system can be performed in a

straightforward manner (see for example [10]). Introducing the transformation,

X = uv‘1 (1.8)

where U,V are nxn matrix functions of XqaeeeXy the following linear system

d 0 A U
O O
d A" B v

with the components of A, B given in (1.3). Compatibility ensures that the

is deduced,

!

orthogonal matrix a = Ea%j} satisfies the GSGE with (1.4) and GWE with (1.5).
Alternatively if we ca11(3) =y , the following linear system of 2n ode's
are obtained:

. &J (\u+cj-p (1.10)

where Aj’ :j are (2nx2n) matrices with the block structure

...........
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N <o ”aj> <o o)
Ay = , C.= - (1)
J <t A .

aj 0 0 Yj

Here Ej, ;j are (nxn) matrices having the following structure

3y = ($ —1)e1 aj+aj, (112)
a; = ae,

where ej = ‘ej}ik is the unit matrix

{e'}ik= C i =k=J} ,
F J otherwise ' (1.13)

and in component form Y5 takes the form:

3a

N Ui 1 P O S el
E (Yj)kz (1 °kj) . Xy 33 ( °zj) ay, X, °kj
: : (1.14).

In {1.12) a is~the orthogonal matrix: Rn*SO(n) associated with the GWE when 3=A

, e 1 ] ; :
and with GSGE when &= %(z*;), A= %(sz), and Yy 18 the matrix (1.14): Rn*ﬁnOR)

Y.+y§ = (0, Although Y; is determined by a, it will be convenient to treat

(a;Yl""Yn) as the data. Then both (1.6) and (1.14) arise as the compatibility
\

conditions for the scattering problem (1.10).




Since we shall separately examine the two cases GSW and GSGE, we write down the
explicit scattering problems which are compatible with each of these equations.

For the GWE the scattering problem takes the form; ¢ = y{x,A):

i?—-: % 1 OO
% A Ajb CJw (1.15)

with : ;

AL = <0 aj) ‘ (1.16)
3 at 0 k
i

and e, is given in (1.14) and c, given by (1.11, 1.14).

For the GSGE the scatteriné problem for y = p(x,z)is

0 (I-e.l)aj
+ 2 (2) . ¢+Cjw , (1.17a)

§(z), r(z), C; given above, or equivalently

~

u =327, +2 , )
3 A *3 qu; + Cj‘b’ 1.17b)

where 0 ua.
J

B. = , u =diag(+1,-1,....-1)
0

......................................

.......
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[n this paper we show how the direct and inverse scattering problems
associated with the GWE: (1.15) and the GSGE: (1.17) can be solved for matrix
potentials tending to the identity sufficiently fast in certain “generic"
directions (to be discussed later). It is along such directions (lines) that
suitable initial values for the entries of a(x) and the matrices yj(x) can
be specified. In §2-4 the analysis for the GWE is given and in §5-8 the
analogous problems are discussed for the GSGE.

Finally, we remark that solving the n dimensional GWE and GSGE reduces
to the study of the scattering/fnverse scattering associated with a coupled
system of n one dimensional ode's. This is in marked contrast to other attempts

to isolate solvable (local) multidimensional nonlinear evolution equations which

are the compatibility condition of two Lax type operators

Ly = Ay _ ' (1.18)
by = My (1.19)

where L is a partial differential operator with the variable t entering

only parametrically. Although nonlinear evolution equations in three independent
variables can be associated with suitable Lax pairs (e.g. the Kadomtsev-Petviashvili,
Davey-Stewartson and three-wave interaction equations - see for example the review
[(111),-1ittle progress has been made in more than three independent variables.

In this context one has to overcome a serious constraint inherent in the scattering
theory for higher dimensional partial differential operators in order to be

able to find associated solvable nonlinear equations: 1i.e. the scattering data
generally satisfies a nonlinear equation [see 12-14]. The analysis discussed
herein completely avoids such problems since the 1inear system is simply a
compatible set of n linear one dimensional scattering problems. On the other

hand, these results demonstrate that the initial value problem is posed

with given data along lines and not on (n-1) dimensional manifolds.

.........
...............
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52 The Forward Problem for the GWE.

We consider here the spectral problem (1.15), assuming the associated
compatibility conditions, i.e. the GWE. The strategy is to transform (1.15) to

a standard form and to associate to it a Riemann-Hilbert factorization probiem

as in [15]. The transformation uses the 2nx2n orthogonal matrices

i 0
15 \o 1/ %

1 I ‘I
N I I

» U= U1U2'< (2.1)

If y is a fundamental matrix solution of (1.15) then the function
Bx,0) = U(x) Te(x.a) (2.2)
satisfies
axj ijw + ij (2.3)
where
J.o=ulau =0 (9 &5\, = (8 0, (2.0
J J
.
and Q. =ulcu-u gyt [T 0y (2.5)
A J 3X . 2 2
J 0 v,
J
where a, = -at ELT (2.6)
J axj

Conversely, (2.2)-(2.6) imply that y is-a solution of (1.15). We look for a
solution 4 in the form

Ax +J T XL (2.7)

p(x,A) = m(x,\)e

Then (2.3) is equivalent to




These equations imply that det m is constant. We look for m such that
m(-,A) is bounded; det m(x,r) = 1. (2.9)

Proposition (2.1). Suppose that for some :\:§, my and m, are two solutions of

(2.8), (2.9). Then there is a matrix W(x)eSL(2n,C) such that

my(x,3) = m1(x,~A)e”"Jw<x)e‘”"'J. (2.10)
Moreover, if A £ i R then W is diagonal.
Proof. One checks that
A e ™ n () Tmy (0 )et T = 0 (2.11)
3xj 1 2

so the matrix in brackets, W(.), is independent of x. Now (2.9) implies
exp(ax-J)W(r)exp(-ax-J) is bounded with respect to x, which is only possible
if A ¢ iR or W()) is diagonal.

We study the problem (2.8), (2.9) by restricting to lines in Rv- Let w

be a unit vector in R and y a vector orthogonal to w. Along the line
Liw,y) ={y + sw : s ¢ R} (2.12)

we consider the restriction of m:

fi(s,a) = m(s,asw;y) = m(y+sw,r).

Then (2.8) gives

am _ <y L As.
*a—s = A[Jw,m] + Cm;
st W.d = :ijj’
Q(s) = Q(s,w,y) = :ijJ-(y+sw). (2.14)

Definition (2.1).

The data {aj,yj} is small in the direction w if the operator norm of the

............
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\ associated matrix function Q satisfies i

- . ::;
f | Qs w,y)}lds ¢ k < 1 (2.15)

- ;.?'

r.

for some constant k and all y orthogonal to w. e

Definition (2.2). . N

The data {aj,yj} is aqsymptoticalfy {2at in the direction w if each ;

derivative of each entry of the matrices 345 Y is rapidly decreasing at infinity -

on each line L(w,y), uniformly with respeét to y. Thus, for each such matrix

entry f, each integer N > 0, and each multi-index 8,
-3, N
[(3x) flyrsw)| ¢ C(1+s]) (2.16)
for every vy 1| wand s ¢ R.

Definition (2.3).

The direction w is codique if the 2n numbers ftwj} are distinct.

Theorem (2.2).

Suppose the data {aj,vj} is small and asymptotically flat in some oblique
direction w. Then for each A ¢ €~ i R there is a unique m(.,\) which solves

the problem (2.8) and (2.9) and satisfies the asymptotic condition .
zim m(y+sw,r) =1, all Yy 1w, (2.17) o

S=
Moreover m is bounded, m{s,-) is holomorphic on €\i R, and the Timits
m (x,x) = zim m(x,te) (2.18)
- e+0+
exist and are smooth functions on Rn x i R. Also

gim m(x,\) =1, (2.19)
[A ]




uniformly with respect to x.
Before discussing the proof of this theorem, let us consider the impli-
cations. For A ¢ { R the limits m_ give two solutions of (2.8), (2.9). There-

fore Proposition (2.1) implies the following.

Corollary (2.3).

There is a matrix-valued function ¥ : i R ~SL(2n,l) such that

m (x,3) = m_(x,0)e (e (2.20)

for all x ¢ R", A ¢ i R.

Definition (2.4).

The function V is the scattering data associated to (a,yj) and the

direction w.
We now sketch the proof of Theorem (2.2). Note that

t . .3 .ty =
aj'+aj = axj (ara) =0, (2.21)

Q. +qt =0, (2.22)
In particular, the diagonal entries of Qj are zero. The problem (2.14)
with the conditions
m(-,) is bounded and zim_ M(s,1) = I (2.23)

is exactly of the kind considered in [15]. Indeed ij = 0 and Jw is

diagonal with distinct entries (since w is oblique). It follows from the
results of [15] and the assumption (2.15) that (2.14), (2.23) has a unique
solution m which is bounded and holomorphic for » ¢ € <1 R and has a continuous

- no_ . ~ . . .
limit on R" x i R. Moreover, m is smooth with respect to s hence our assumptions




imply also that it is smooth with respect to y. These considerations give

us many of the properties of m, which is defined by
m(y+sw,x) = m(s, ;w,y), ylw. (2.24)

To show that m satisfies the full set of equations (2.8), we use the compatibility

conditions (GWE). It is most convenient to choose new variables x = (i],.,,in)

by an orthogonal change of coordinates in R" chosen such that %;— = %?'
N

The desired equations (2.8) take the form

am . c e
8_5('5 )\[JJ,m] + QJm = RJm

for j>1, and

am am _ )
% 35 A[Jw,m] + Qm = Rm.

The compatibility conditions (GWE) imply

3Q%
3 - - .
o6 A0 T O v

[Jj, Q] = DLQJ], i>1..
The solution to (2.14) satisfies the integral equations (see [15])

m{s,A) =1 + Js o((s-t)A)[Q(t)m(t,x)]dt

+o

where the limit t= depends on the matrix entry and on the sign of Rex, while

$ operates on matrices by
s(u)[B] = e“Iwge dw (2.29)

we utilize: (2.27) (employing shorthand notation) to. compute-




..................................

-~
) b ‘ .‘.\
3m T A AP . S I RN of B Y 4 gy
-_5—-x—.- - \LJJ,m] - }' :’ta—x-_m Q-g-x. [ J ] :.
j J J 0
% L Q2 - Al0.,Q0Im - AL .m] it
= J @(‘—a—%m + [QJ »Q]m + aij w''j J
2 4 Qmidt - . Q- - A[J],m] - Qm)}dt
Tod T ;7R i’ j
= Qim + ) ’Q(ém— ;x[J’ m] - Q:m)dt. (2.30) .
=4 MET P & 3 .g s
Thus S ' }
A Rm- J (23T - Rim)Jdt, (2.31)
J
which implies (2.25). (Note that the asymptotic conditions were used in
the calculation (2.30), to eliminate a boundary term in the intergration.) This
completes the proof of Theorem (2.2).
We turn now to the properties of the scattering data V. We introduce an ;

automorphism of 2nx2n matrices:
5 0 I 0 I
8= \; oJ8\1 o)" (2.32)

The scattering data V has the following properties:

Theorem (2.3).

each entry of V-1 belongs to the Schwartz space S(i R);  (2.33)

.................................................................................

............
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Proof.
(2.33) follows from results in [15]. To obtain the symmetries (2.34),

observe first that Jj and Qj,are real and i

t _ = 1@ <« .at = n° |
Jj Jj Jj, Qj Qj Qj- (2.35)

It follows m{x,x) satisfies the same equation as m(s,A) -and that both

m(x,A)° and (m(x,k)'1)t satisfy the same equation as m(x,-r).. The boundedness

and asymptotic conditions are also satisfied, so

m(x,x) = Mx,1), (2.36)
m(x,=-1) = (m(x,,\)'])t = m(x,x)°. (2.37)
Therefore
V(-x) = m_(O,-k)'1m+(0,-l)
= m (0,05 (m_(0,007 1) = v(n)F, (2.38)

and similarly for the remaining symmetries.
Let us remark here that the construction of m by a Neumann series

implies the estimates

Imfl & (-7, fim = 1) < k(1)

I < Q=07 1) < k(=0T (2.39)
where k < 1 is the constant of (2.15). It follows that

IV - Ti) ¢ 2k(1-k) 2.

In particular,

(v-1l ¢1ifogxk

I
n
]
S
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We conclude this section with a brief discussion of normalizations and
the relationship of this treatment of the forward problem to that in [15]. The
normalization (2.17) depends on the choice of a direction w; therefore the
solution m and the associated scattering data V depend on w. In [15], with n=1,
the normalization was made at -« and the resulting scattering data V had certain
principal minors identically equal to 1. Here, the same éonsiderations show
that for a given direction w certain principal minors of the aésociated scattering

data V are = 1. In the absence of a single natural oblique direction, we have

chosen to consider all possible scattering data and have not imposed conditions

on principal minors. We return to this question at the end of Section 3.

.......................................
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§3 The I[nverse Problem for the GWE.

Suppose V ¢ i R - SL(2n,C) is a matrix-valued function which satisfies

the conditions (2.33) and (2.34). Suppose also that

HV(x) - Il <1, X ¢ TR, - (3.1)

Theorem (3.1).

For each x < R" there is a unique matrix-valued function m(x,) which
is bounded and holomorphic on €~ i R, with continuous limits m_on iR,

and wnich satisfies
m,(x,A) = m_(x,x)e*x’JV(x)e'kx‘J,x e iR

2im m(x,r) = I. (3.2)

P e

The function m is smooth on Rnx(c*\i R) and satisfies a system of equations

am

—3-? = \[JJ ,m] + QJ(x)m | (3.3)
where Qj + Q§ z 1 and Qj is real,
Q,(x) = U5 R U (3.4)
(X = . .
J 2 0 Yj(x) 2

Moraover, the data {:j,yj} is asymptotically flat in every oblique direction
in R".
This theorem essentially follows from results in [15]. One way to obtain

the equations (3.3) is to note that the function ”j = %gf - ‘[Jj,m] also
J

satisfies the Riemann-Hilbert condition (3.2), from which it follows that

..................
.....................................
-----------------




Q. = ”jm-] is continuous acress 1 R. Therefore Qj is entire; it is bounded,

J
hence independent of 1, which gives (3.3). The symmetry conditions (2.34)
imply that m(x,%), (m(x,-x)'T)t and m(x,-1)7 also solve the Riemann-Hilbert

problem (3.2). B8y uniqueness, m has the symmetries (2.36) and (2.37). Therefore
Qj is real and has the symmetries (2.35), which in turn give (3.4). Finally,
an oblique direction w corresponds to a diagonal matrix‘Jw = :Wjdj having

distinct entries, and the results of [15] give rapid decrease of the data Qj

along lines in the direction w, as desired.

Remark. The data Qj generally does not decrease rapidly in directions which

are not oblique.

To connect this result to the GWE, we need one more step.

Lemma (3.2).

There is a function a : R" ~ SCG(n) such that

< gt
3j = -4 ij (3»5)

Proof.

The compatibility relations for the system (3.3) imply
(3.6)

These in turn are the compatibility reiations for (3.5). If a solves

(3.5) then %;7(ata) = 0, so we can guarantee that a ¢ $0(n) by choosing it to

belong to SJ3(n) at a specified point or asymptotically in some oblique direction.
A solution of (3.5) is unique up to left multiplication by a fixed element

of SQ(n). If a is any such solution we refer to {a,yj} as inverse data for the

function V.

pr T
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Theorem (3.3).

If {a,yj} are inverse data for V, they satisfy the GWE.

Proof.

We simply reverse the procedure at the beginning of the preceding section
The function

a 0 Ay o
pon) = [ ) Uy mone XY (3.7)
g1 ’
satisfies the system (1.14), so (a,Yj) satisfy the GWE.

Let us connect the inverse data explicitly to the asymptotics of m in .
By [15], m has an asymptotic expansion

m(x,x)~vzo mv(x)x'v, A,

(3.8)
This expansion can be differentiated term by term, giving
3 =
?)va Qjmv + [Jj,mv+1]. (3.9)
In particular, my = [ and s0 we obtain
QJ(X) = ‘[Jj»m](x)]
= -2im k[Jj,m(x,A)]. (3.10)
A=

This gives another method for deriving

symmetries (2.36) and (2.37) of m.

the symmetries (2.35) of Q from

(RS

PN NN

P = |
?E ) "':“:".
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As we noted at the end of section 2, different functions V may occur
as scattering data for the same inverse data unless some further normalization
is imposed. Therefore to complete the analysis of the relationship between
solutions of the GWE and scattering data, we need to know when two functions
V1,V2 as above give rise to the same inverse data. Let m, m, be the associated

solutions of (3.2). If the inverse data is the same, then by Proposition (2.1),

mz(x,x) z m1(x,k)A(X), e TN R (3.11)

where 4 is diagonal and holomorphic and has boundary values &_; moreover
A(A) = 1 as |a|»=. 4 has the same symmetry properties as m, so 4 is the
solution of a Riemann-Hilbert problem (2.3) for a diagonal V. Clearly ‘1.l

and V2 are related by

U= (3) e, (3.12)
In particular, V gives trivial inverse data if and only if V is diagonal.
Conversely, if V2 and V1 are related by (3.12), where i, are the boundary
values of the solution to (2.3) for a diagonal V, then Vi and V, have the

same inverse data.

AR
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§4 A Well-posed Initial-Value Problem for the GWE.

The result of the preceding two sections both suggest and solve an "initial

boundary" value problem for the GWE. Let us say that a solution {a,yj} of the GWE is

small if there is some cblique direction such that the associated data faj,Yj}
is both small and asymptotically flat in that direction. As before, if w is
a direction (unit vector) in R" and y is orthogonal to w, we parameterize the

line L(w,y) by s~y + sw. Without loss of generality we may translate the

coordinates and take y = 0.

Theorem (4.1).

Suppose w is an oblique direction in Rn. Suppose

[~}

: L(w,0) > S0(n) and ¥ : L(w,0) > M (R) are smooth mappings such that

-t 33 - o -t
= - at 3% and v are Schwartz functions of s, v

fol]

+ 7 = 0 and

jw | 3(s)|| ds < 3 - /2.

Then there is a unique small solution {a,vj} of the GWE such that

a(s) =z a(sw)- 4.1)
v(s) = Zwyy;(sw)
Proof.
Let m be the solution of
Mis,n) = ABM] + QR Hm @(s,a) = (4.2)
-1 2 0
where Jw = :ijj and Q = U, . U,. There is a mapping ¥: i R » SL(n,()

such that for e 1 R,

LRI LT R
- i_-‘.LAA'u' P
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ﬁ+(s,k) =m (s,k)e( "Wix)e . (4.3)

Note the term e}SJWV(k)e'ASJW is the specialization to the line L(w,0)

Xx'JV(x)e'kx'J. Thus factorization of this latter function gives us an

of e
extension to R" of m. V satisfies the hypotheses of Theorem (3.1) so there is

an associated solution m of the Riemann-Hilbert probelm (3.2) and

m(s,A) = m(sw,\). ' (4.4)

Let {a,yj} be inverse data for V, normalized so that a(s,w,y=0) = da(s}

Because of (4.4) we obtain

a(s) = 2wjaj(sw)
= R . : 4.5
v(s) szyJ(sw) . (4.5)
. . . 4. da.t _da.t : -z
The first identity implies 3% S ggE on L(w,0) so we obtain a =z a on L(w,0).

This completes the proof of existence. Uniqueness follows from the fact that

the scattering data associated to a small solution {a,yj} and to the direction w
is uniquely determined by m on L{w,0) and therefore is uniquely determined by

the functions 3 and y defined by (4.5). Therefore the scattering data is uniquely
determined by the functions (4.1} The scattering data, in turn, determines Y5

and determines a up to left multiplication by a constant matrix. Since a(s,w,0)

1]
[
——

wn
~

is prescribed, the proof is complete.

Remark: One can think of V(%) as the initial values for the function
v (ny) = eV dy(a,0eV (4.6)

Replacing V(1) in (4.3) by Vy(X,y) gives the evolution of m to all values of
R" which in turn corresponds to m. This is in analogy to the standard

situation in IST problems.

............................

......
------
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55 The Forward Problem for the GSGE.

Here we assume the GSGE and consider the associated spectral problem
(1.17). This problem cannot easily be transformed to a single standard form,
unlike the GWE. Nevertheless we shall still associate a factorization problem ;
of Riemann-Hilbert type with (1.17).

Once again we denote

and we let # denote the automorphism

p -1 [ 0 R Q (5.2)
ET = U U,EU U 5.2 ;
2\o 1/ 2 %2\o 1) ? :
where ;
U= diag(+1,-1,-1,...-1)eM . (5.3) -
In particular, i

#o_ # . .
Jy = dqs Jj =-J.,,1<jsn (5.4)
We set
w(x,z) = U; v(x,2) (5.5)

so that the spectral problem (117 becomes

-

%%f-= %zAJQ + %réj5 + Ejﬂ, (5.6) .
J -




..........
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The trivial (unperturbed) solution a = I, ty® 0 of the GSGE has the associated "
equation 23
30 -1 1.,# b= e ~ ;
PR TR MEREHOE (5.8) 3
which has a solution exp(x-J(z)). We view (5.6) as a perturbation of (5.8)
and look for a solution in the form
v(x,z) = m(x,z)ex‘d(z) (5.9) If
The equations for m are then 2
am _ 1 _r, 1 e o af - 5
3;} =5 z[Ajm mdj] t 5= [Bjm mJj] + ij. (5.10) .
As before, we normalize by -
m(+,2) is bounded. (5.11) 8
i)
Definition (5.1). >
-
The direction w in R" is srineipal if [wy [> 1w | for 1 <jen. i
Anticipating the argument below, let us consider
n
z Iw.d. = W, 4 Low, .
J (z) = EWJJJ(Z) Wy8(z)d, + J=2wJ>\(z)JJ (5.12) ’
This matrix is diagonal with entries wy 8(2), tsz(z), :wjk(z), t<jign. The set
of z in € such that two distinct diagonal entries have the same real part
always contains the set
D= ROz [z] =15, (5.13) 2
;
X!
e e e T L e e e T e
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i.e. the union of the imaginary axis and the unit circle. It is equal to this set

precisely when the direction w is oblique and principal.

Definition (5.2).

t 3a

The data {a,a;,v,;, where again o, = -a~ =— , is small in the direction
J7 J 3Xj )
w if for every y 1 w,

ja I Q(s,w,y) |l ds + %—Jm la(y+sw) - 1[[ds ¢ k < 1.

- ' (5.14)

a, 0
Here again Q = :ijj = ow, [ Y . We say the data {a,a.,yj} is

J " J
73

asymptoticallu 4lat in the dirnection w if {aj,YJ} is asymptotically flat

in the direction w.

Thegrem (5.1).

Suppase the data {a,aj,yj} is small and asymptotically flat in some
principal oblique direction w. Then for each zef\Z there is a unique
m(:,2) which satisfies the system (5.10), (5.11) and such that for each

yLiw
2im m(y+sw,z) = I. (5.15)

S

Moreover, m is bounded, m(x, ) is holomorphic on €~ I, and m(x,.) has
continuous limits on £ from each of the five components of ¢NZI.
To be specific, let us denote by m_ the Timit on ¢ from the components

{ |z]|>1,Rez>0} and { |z]<1, Rez<0} and denote by m_ the 1imits from the other

two components.
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Corollary (5.2).

There is a matrix-valued function V:IN\( =i}~ SL(2n,L) such that

m.(x,z) = m_(x,z)ex'J(Z)V(z)e‘x'J(z) (5.16)

As before, we define V to be the scattering data associated to (a,yj) and

the direction w. To prove Theorem (5.1), we make two transformations. First, let

- g -1 a ‘
m*(x,2z) = U, ) Uom(x,z)
= u"u2 (x,2). (5.17)
Then the system (5.10) becomes
Qm‘ - - s’
3;3'- [Jj(z),m 1+ Qjm , . (5.18)
where
. _ =l 0 1y #
Qj(x,z) = Uy OJ U2 * 5= [u BjU-Jj]. (5.19)
‘.
J

L[y (2).0] + QR

m(+,2z) bounded, 2im @(s,z) = I, (5.20)

S+=co
where
Q7 (s,z) = Q7(s,z;w,y) = :ijj(y+sw,Z) (5.21)
Although this problem is not identical to that considered in [15], nevertheless
the methods of [15] apply to give existence of a unique solution m(-,z) = !

."’“ 2ow v) far all Zat\z such that 8
[ . - e - . LS K R . . )
- A

. \" . . -
-.--'_-t‘..__cx- SO
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Ja ] Q°(s,z)[ds < 1. (5.22)

The integral in (5.22) is majorized by that in (5.14) when [z|>1..

Changing to
m”(y+sw,z) = m(s,z;W,Y) ’ (5.23)

and arguing as in 52, we see that m = Uéqu‘ has the desired'properties
for all |z|>1. To obtain results for |z|¢ 1 we can either use a second

transformation or take advantage of a symmetry. Note that

/.y =
Jj( Z) = Jj(Z)#,

aft = A Xid = 2 i = ~. 4
Bj Aj’ Aj Bj’ Cj FJ. , (5.24)

Therefore m(x, %&” satisfies the conditions for |z|g1. This completes
our sketch of the proof of Theorem (6.1).

As for the GWE, one has symmetry properties in addition to (5.24),

4 -
namely that Jj, Jj, Aj, Bj, Cj are real and

J J J
- - -t - ..c
AJ = Aj AJ,
i N N (5.25)
8. = 8% = -89,
3 J J
- = ~t = O
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Thus one has

t
n(x,-2) = [m(x,2)"'] = m(x,2)°,
: (5.26)
m(x,2) = MX,2Z)» m(x,]/z) = m(x,z)%.
The symmetries of V are an immediate consequence.
Theorem (5.3).
The scattering datﬁ V has the symmetry properties .
V(-z) = V(2)® = [v(2)711°,
- - 1, _ -1,#
V(zZ) = V(z2), V(z) = (v(2) )", (5.27)

N

The analytical properties of V can also be deduced from the results of [15].

As given above, V is defined on each of the five components of I\{ =i}.

We join the two unbounded components by compactifying at = and set

£y = {1z} =1, Re z > 0},

L, = {z+z = 0, |z] > 1},
£y ={]z| =1, Re z < O},
Iy = {z4¢2 = 0, |z] < 1}.

For convenience, we denote restrictions by

V, = V|
I

Theorem (5.4).

Each Vj has a smooth extension to the closure of zj.

(5.28)

(5.29)

Each derivative

of v-1 is O(zN) as z+ 0 and O(z’N) as z - =, for each integer n » 0.
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At =i the Vj satisfy consistency conditions:

V1V2V3V4(:i) = I. (5.30)

More generally, for each integer N » O there are matrix-valued polynomials

pj of degree N such that

Sy oL el . ., N+1
Vj(z-1) -(pj(z-1)) pj+](z-1) +0 ﬂ12-1{ s
as z ~ 1, (5.31)
with similar conditions at -i, where we take Pg = Pq.
As motivation for the next section we note that the function m~ in

(5.18) extends to £ ~I and is the solution of the Riemann-Hilbert factorization

problem (5.16) which is characterized by

2im m*(x,z) = I. (5.32)

o]

- - -
Ve

YT




.....................

-29- ,
;6 The [nverse Problem for the GSGE. '&;
Let V : ¢ - SL(2n,f) be a matrix-valued function satisfying the .
symmetry conditions in Theorem (5.3) and the smoothness, decay, and consistency
conditions of Theorem (5.4). Suppose aiso that
Iv(x) - Il k', v ez (6.1)
where k * is a sufficiently small positive constant. Then by the methods
of [15], for x ¢ R there is a unique function m“(x,-), holomorphic on €\ I
with 1imits on £, such that
m(x,2) = mo(x,z2)e* Y (Zy(z)e 7 3(2)
gim m (x,z) = I. (6.2)
2]+
The function m” is smooth up to the boundary on Rnx(G\z), and y
me(x,2) = 1 +0(z7), (2], (6.3)
. . L . v (_
m-(x,2) =0 mv(x)z , z=0. (6.4) ;;
Moreover, in any principal oblique direction w, for y | wand » ¢ €\ ‘;
gim (m-(y+sw,A) = & (6.5) L
St = -..
where 2 is diagonal. The convergence in (6.5) is O(js['N) for every N, "
and the same is true for derivatives of m”. Also, m” and its inverse Ef
are bounded functions. i;
O
In view of these properties the functions

(32~ (452D ()" (6.6)
J

...........................
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holomerphic on T~ I, continucus across . except at z = 0, bounded as =,

and 0(1/z) as z-0. For any fixed x such a function is affine in z“.

Therefore m~ satisfies a system of equations which we can write in the form

§)m + ij’ (6.7)

. lge
5xj - [JJ(Z),m J j ZZ(BJ J

where Bj = Bj(x) and Cj = Cj(x).

The asymptotic expansion (6.4) can be differentiated, and (6.7) implies in

particular that

c
Bij = modj. (6.8)

Now md is asymptotically, and rapidly, diagonal in principal obligue
directions, so in such directions

-

Bj - Jj -0 . (6.9)

Because of the symmetries of V and the uniqueness of m” we obtain the

symmetries
m-(x,-3 = [m"(x,z) 1]t = m(x,z)7,
(6.10)
m-(x,z) = m(x,z).
These in turn imply that B; and C; are real, while
© = (B = -(8])C,
B; = (8))% = -(8;)
c: = -(cH)% = (c))° (6.11)
J J J

...... R

WO T T
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Thus these matrices have the form

J
- _] Cﬁj O

Cj = U2 (: j)uz . (6.12)

0 v |
where sj, aj, yj are real and
t t
.+ L, o= = . v .
aj + aj 0 YJ+(J (6.13)

We can extract more information from (6.8) by exploiting the symmetries

(6.10). These symmetries imply

. _ = At oo
My = My = (mol) —mo, (6.14)

- -1 /f O
mg U > (; ;) U2 (6.15)

where f and g take values in O(n). Let

SO

un

m*'(x,z) = m”(x, %) . (6.16)
Then (mE;\#m" satisfies (6.2), so
n(x,2) = (mg )7 m(x,2), (6.17)

Thus

ng = (g )7 (6.18)

a,
LIS
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so that

g=g. (6.19)
Since also 92 = gtg z 1, g has eigenvalues =1. Now g depends continuously
on Vand g = I when V = [. Thus g is symmetric with all eigenvalues +1, hence

g=1I, (6.20)

Combining (6.8), (6.12), (6.15), and (6.20), we obtain
= fue. 6.21
BJ fueJ ( )
Now (6.21) implies that for j#k,

JjBk -

-1 {0 0
BkJJ. 5 <o *> U2.. . (6.22)

The compatibility relations for (6.7) include

t
ey

]
[ oy

3 elsclc, +1.848.)

axkj*Jk 3\ °3%K %35
_ ) . . . l . A
= 3§;Ck + Cij + 4(JkBJ.+BkJJ.) (6.23)

In view of (6.22) and (6.12), (6.23) implies

3a . a
j L% (6.24)
X, ooy ‘~;'x"j Ty

These are precisely the conditions for solving for a with

= gt 33
ay = a 3xj . (6.25)

......
.............
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We can require that a+![ as s - -= along a family of principal oblique

lines. Then since %5 is skew symmetric (and real),

a: R" - s0(n). (6.26)

Definition (6.1).

{a,yj} is inverse data for the function V.

Theorem (6.1).

The inverse data {a,yj} satisfy GSGE.

Proof.
Let
u(x) = (200 0\ 1y, (6.27)
0 I

and set

v(x,z) = U(x)m'(x,z)ex'd(z) (6.28)
Then the equations (6.6) become

ool .. ] ,

axj 22Aj$ + ZEBJy +ij (6.29)

where

......................................................
.......................................................

..................
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. 2] U -1 W
¢, =UCUT - , :
: = /0 0\ (6.32) :
X > - .
N »
. and
b=afu. ' (6.33)
To complete the proof we only need to prove ’
b =ua.. (6.34)
Let us write
" u 0 u 0
] ET = E . (6.35)
4 0 I 0 I
?f Then we want to prove
T
. = B . .36
Ay = B (6.36)
.f To prove (6.36) we write the compatibility conditions for (6.29) in the ﬁ
- notation of matrix-valued differential forms. Let
R
N = .dx . = .dx . = dx.. .37 ;
.A ZAdeJ, B ZBdeJ, C ZCJ X (6.37) :
The compatibility conditions are -t
A~A=038"8, 3
dA=A-~C+C A, dB=A"~B+8"A, :
- dC =C ~C+ A "8+ B8 "A. (6.38)
- Since € = C* = zCldx; we have
2 d(A-B%) = (A-87)~C + C~(A-B"). (6.39)

S e P D AU e L P PR P . e
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Now

RS ARAN

p =]
[]
[we)
~
1}
[ o
—_
[«
]
—
o
\
—
RS
—
[y
]
—

T (6.40)

n
[ w—
PasnY
Ca

LTt e o

and we know that J? - Bj vanishes asymptotically in certain directions.

It follows from this fact and (6.39) that A - B® = 0.
Remarks.

1. As for the GWE, the data {aj,vj} can be recovered from the

Tal o e

asymptotics of m“ as z » = as in (3.10). Thus the orthogonal matrix-

valued function a is also determined implicitly by these asymptotics.

2. The data {a,aJ.y .} is small in every principal ob11que d1rect10n
(

—‘L.l

if the constant k™ of (6.1) is small enough, and is asymptotically flat

in every principal oblique direction.

-

3. As for the GWE, two functions VT and V2 give rise to the same N

inverse data if and only if

Uy = (o) s, (6.41) :

..",‘., oo

where A is the solution of the Riemann-Hilbert factorization problem (6.2)

for a diagonal matrix-valued function on z. In particular, V gives the trivial

solution of the GSGE if and only if V is diagonal.

.............
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37 A Well-posed Initial-Value Problem for the GSGE.

With the same conventions as in §4, one has the same conclusion:

Theorem 7.1.

Suppose w is a principal oblique direction in R".

Suppose 4 = L(x,0) - SO(n) and y = L{w,0) ~ MnOR) are smooth mappings
such that o = -ét—%% and y are Schwartz functions y + ?t = 0, and

[ las)es < x

where k0 is a sufficiently small positive constant. Then there is a unique

small solution {a,yj} of the GSGE such that

a(sw)

f*X]

——
"

Sr®
]}

ijyj(sw)- (7.1)

=<

o~
wn

S
n

The proof is the same as the proof of the analogous result for the

GWE in 354, hence is omitted.
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[. INTRODUCTION

The Inverse Scattering Transform (IST) was discovered by Gardner,
Green, Kruskal, and Miura [1] who were able to relate the celebrated
Korteweg-deVries (KdV) equation in the varijable q(xo,t), to the classical

time-independent Schrddinger equation ?Xoxo + (q(xp;t)w+ k2) = 0. The
next eigenvalue problem to receive considerable attention in this field
was the so-called AKNS [2], [3] scattering problem: ¥, = iKJ¥ + gy, where
J is a 2 x 2 constant real diagonal matrix and q(ko,t)ois a2 x 2 off-
diagonal matrix containing the potentials. The AKNS problem is related

to the nonlinear Schrodinger, modified KdV and sine-Gordon equations. The
3 x 3 extension of the AKNS problem (3 x 3 AKNS) was studied in [4] and

is related to the 3-wave interaction equation in l-spatial dimension. The

N x N AKNS (5] has been studied by Shabat [6] and then by a number of

authors [7] and is related to N-wave interactions.

*Supported in part by the Office of Naval Research under Grant Number
NOOO14-76-C-0867, the National Science Foundation under Grant Number
MCS-8202117, and the Air Force Office of Scientific Research under Grant
Number 78-3674-0.
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The IST method can be summarized as follows: The solution of the 'E
initial value problem of certain nonlinear evolution equations is essen- S
tially equivalent to solving the inverse scattering (i.e. reconstructing o
the potential q(xo) from appropriate scattering data) of related eigen- G

value problems. The Schrddinger eigenvalue problem (with its Sturm-
Liouville extension [8], [9]) and the N x N AKNS are, in our opinion,
the main differential problems which have been used in connection with the
[ST in l-spatial dimension. There exist several variants of the above
probiems [10], [11], which however should be solvable by some simple
variation of the procedure used to solve the above two fundamental ones.
[t is therefore natural to consider extensions of these two eigenvalue
oroblems when seeking multidimensional generalizations of the IST.

The 1-spatial dimensional extensions of the above eigenvalue prob-
lems have been recently studied by Bar Yaacov and the authors: The
Schrdinger eigenvalue problem can be generalized to<r§ + Wx + (q+k2)w =0

1 0%0 A
and the potential q(xo,x1;t) is related [12] to the Kadomtsev- i

Petviashvili (K-P) equations [13]. There exist two important cases

g =1ando= -1, corresponding to KPI and KPII; thefr inverse problems
were linearized via a Riemann-Hilbert (RH) [14] and a 3 problem [15]
respectively (a 3 problem is a natural generalization of a RH problem).
The N x N AKNS problem can be generalized to ¥ = cdlwx + q¢ [19], where

J1 is an N x N constant real diagonal matrix ang q(xo,xllt) is an N x N 5
off-diagonal matrix. There exist two important cases, hyperbolic (g = -1) -~
and elliptic (o = i); their inverse problems were also linearized via a
RH [16] and a 3 problem [17], [(18]. The hyperbalic problem can be used

to solve the initial value problem of the following nonlinear equation in

2-spatial and 1-temporal dimensions: the N-wave interactions, modified
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KPI, and Davey-Stewartson (0S) I equation [19]. The elliptic problem can
be used to solve the modified KPII and DSII. Prior to our work, inter-
esting results regarding the solution of initial value problems in multi-
dimensions can be found in [20], [21], [22].

In dealing with the above 2-spatial dimensional problems it
became clear that one had to generalize the notion of the inverse scatter-
ing in general and of inverse scattering data in particular. This is
also true for scalar operators as well. Namely, in both the elliptic and
hyperbolic cases one can solve the inverse problem in terms of certain

data T(k],kz), k1, k2 £ R which we call inverse data. These data can be

related to scattering data only in the hyperbolic case (see section 2.B).
However, the elliptic case is still physically important since, although
one apparently can not define physically meaningful scattering, one may
still use the above formalism to solve physically interesting nonlinear
evolution equations (modified KPII and DSII).

In this paper we shall consider extensions of the N x N AKNS

problem to greater than 2-spatial dimensions, i.e. we shall study

¥ +gI J¥, =q¥, o= op * ioI

n+l

where q(xo,x) is an N x N matrix-valued off-diagonal function in R and

J2 are constant real diagonal N x N matrices (we denote the diagonal

1 N
)

entries of JZ by JL""’JZ . Alternatively, using the transformation

W(xo,x.k) = u(xo,x,k)exp[i(kx-chkJ)], K e Rn,
n
hwere kx - chJ = 151 kl(x2 - XOJl)’ we shall consider
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For the sake of completness only, we state the following, regard-
ing the extensions of the Schrddinger equation in greater than 2-spatial
dimensions: 1) Such extensions are not known to be related to any
nonlinear equations. 1ii) The inverse scattering of the classical 3-
spatial dimensional Schridinger equation has been studied in [23] and [24]
and more recently in [25] and [26].

The system (1.3) is interesting for the following reasons:

(a) In the hyperbolic case, i.e. o = -1 one may resolve the physically
important gquestion of inverse scattering: Given the scattering ampli-
tude function S(A,k), X, k e R", find the potential q(ky.x).

(b) A special subcase of the hyperbolic case, namely if the J1'S are

constraint via

2 J i J
2o al oy
L B2 P g r=1,...,0, 1,5,251,....0
BEdID LR LIS

r r r “r

contains the N-wave interaction in n+l-spatial and 1-temporal dimensions
[5]. This equation is the only known nonlinear system related to an eigen-
value problem in greater than 2-spatial dimensions (for our purpose the
self-dual Yang-Mills equations is not an evolution equation).
(c) For the general g case (except ¢ = -1) one cannot define physically
meaningful scattering and there appears not to exist any related physi-
cally interesting nonlinear systems. However, it is mathematically
interesting since it provides a unified approach to multidimensional IST.
With respect to the above note: (a) In the hyperbolic case the
scattering amplitude function S(X\,k), X, k ¢ R" depends on 2n parameters,
while the potential q(xo,x) depends on n+1 parameters. This fact, for

n > 1, three important implications: i) Using the Bohr's approximation

LA al G Eand Al Jiak sed il Asl salh Mgl el At and )
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it is possible, in an elementary way, to reconstruct q(xo,x) in closed %
form in terms of S(A,k). 1ii) From the above reconstruction it follows x
that the time evolution of q(xo,x;t) is linear, hence it is impossible s
for q(xo,x;t) to satisfy a nonlinear evolution equation. Thus the N-wave é
interaction equation must be reducible to 2-spatial dimensions. {i1) &

o5

The scattering data must be appropriately constrained. This “character-
ization" of scattering data, which is a novelty of problems in greater
than 2-spatial dimensions, expresses the essence of difficulty associated :
with inverse problems in greater than 2-spatial dimensions. (b) In
the general o case the situation is similar to the nyperbolic case: The
inverse data depends on 3n-1 parameters {(while q(xo,x) depends only on
n+1 parameters), it is elementary to reconstruct q(xo,x) in terms of
inverse data, q(xo,x;t) cannot satisfy a nonlinear evolution equation,
the only interesting problem is the solution of the characterization
problem. ::
In this paper the following results are presented:

(a) The hyperbolic multidimensional N x N AKNS problem (i.e. eq. ( . )
with ¢ = -1) is first considered in section II: 1) the N-wave interaction

equation, which is contained in ( . ) when the Jy's satisfy ( . ), is

reduced to 2-spatial dimensions via an explicit transformation of coordin-

ates. 1ii) The characterization problem is solved in two ways: The first
method requires that the reconstructed q(xo,x).must be independent of k.
The other, explores the analytic structure of the inverse data

T.(AK), A, ke R" with respect to k. In more details: In IIA we intro-

duce eigenfunctions u+(x0,x,k), u'(xo,x,k) analytic with respect to ky,

for k; > 0 and k; < 0 respectively. With the aid of these eigenfunctions
[

[




we can solve the inverse problem as well as reconstruct q(xo,x) in terms
of a Riemann-Hilbert (RH) problem uniquely defined in terms of the in-
verse data T_(X,k). The relevant formulae are direct generalizations

of the ana1o;5us formulae in 2-spatial dimensions [16]. These formulae
provide a less effective way of reconstructing q(xo,x) than the Bohr's
approximation, however they proive the basis for the solution of the
characterization problem. In [[B we relate the inverse data T+(A,k) to

the scattering amplitude function S{A,k) via a linear integral equation.

Also we give the Bohr's approximation reconstruction of the potential

9 q(xo,x). In IIC we solve the characterization probiem for T+(k,k) using

the results of IIA. Because of [IB this also provides a solution of the

characterization problem for S(\,k). In IID we show that if the Jz's are

constrained via equations ( . ), a new k can be introduced (which is a

combination of the previous k's), the scattering data depends only on

two parameters, and the characterization problem is by-passed. This also
provides an additional motivation to reduce the N-wave interactions to
2-spatial dimensions. In IIE we apply the direct linearizing method to
the solution of the inverse problem.

(b) The general o case is then considered in section IIIl. The associ-

ated characterization probiem was first solved in [28] via the "T equation®.

-

In this paper both the T equation and its derivation are somewhat simpli-
E; fied by using slightly different inverse data than those of [27., [28].

In more details: In IIIA we introduce an eigenfunction u(xo,x,k) bounded

-
~

- for all k ¢ C". Using a 5 probiem we solve both the inverse problem as

well as reconstruct q(xo,x) in terms of the inverse data




Tk ek oTseam )y Ky 2 €, M € R, 4,5 = 1, N, Similar form-
ulae were given in [27] for ¢ = i, in [28] for general o, and provide
generalizations of the analogous formulae in 2-spatial dimensions [16].
Here we use a slightly different “"symmetry condition" of the underlying
Green's function. The above formulae, like in the hyperbolic case, pro-
vide a less effective way of reconstructing q(xo,x) than the Bohr's
approximation but again provide the basis for the solution of the
characterization problem. In IIIA we also give the Bohr's approximation.
In IIIB we derive the T equation. Also, the reconstructed q(xo,x)
appears to depend on k; furthermore there exist various inversion
formulae for the solution of the inverse problem. It is explicitly

shown here that the equality of the inversion formulae is equivalent to
q(xo,x) being independent of k. In IIIC it is shown that if the Jl's are
constrained via equations ( . ), a new k can be introduced. Tij depends
only on n+] parameters, and the characterization problem is by~-passed.
This is consistent with the fact that the T equation is identically zero
in this case.

Concluding this introduction we note that all results presented here
are formal: Both the direct and inverse problems involve linear integral
equations. One still needs to establish existence and uniqueness of the
solution of these equations. Thus, strictly speaking, “solved” should be
replaced by "formaily solved". However, if q(xo,x) delays sufficiently
fast for large XgsX and if its appropriate norm is sufficiently small, all

equations presented here are well defined.

I SN T B S 2
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II. THE HYPERBOLIC SYSTEM

We first consider equations ( . )-( . ) when g = -1.

A. The Inverse Problem

Let ”Of’ n.f, n_f denote the diagonal, strictly upper diagonal,

and strictly lower diagonal parts of the matrix f. Let 32f 2 [Jz,f],

~

for any diagonal matrix Jg, thus exp(dz)f = exp(JZ)f exp(-dz). If
n

n .
keC, xeR" thenkx ¢ ¢ kx,o kd 3 Tk d . Let {f}' denote the
2=1 2=1 . .. ]
ijth component of the matrix f and {(f(x + xOJ)}1J = fU(x1 + xOJ;,...,
Xy * xOJ;). Rewrite equations ( . ) in such a way that J} > J$ >,..> J1
Froposition 2.1.
A soiution of ( . ) with ¢ = -1, bounded for all complex values
of k] = k] * ik1 and tending to I, the unit N x N matrix, as k] > ®
R I
is given by +
u (xo,x,k), k; 20
U(XO,X,k) = I 3
Wi(xgaxsk), kg 20
I

where uf(xo,x,k) satisfy the following linear integral equations:

x i (x2-E )kd
ut(xo,x,k) =1 + f 0 daoe 00

(TTO‘H‘.:) (qut) (EO ,X+(X0'60)J )k)
@ 1(xq=8 )ka
- J d&oe 070
X

0 +

ar, in component form

n o
. . . id
41 0 1(xo-go) Zk (Jz'Jz)

ij %
U (XO,X,k) = g +J-m d&oe 2=1
o ) TGO 1-
- }x dEOe 2=1 TT-(QIJ ) (Q09x+(xo'go)d |k)’

N

7 (@) (Egsx+(xg=Eg)d,K) s Ky € Crkyrunok € R

'."..'n{ oe

(m ) (@) (5 e (xg=50)3 " i)

v 2 e
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where ¢'J =0 if i £ jand g =1 if 4 = §.

To derive equations ( . ) note that the Fourier transform,
@G(xg,m,k) = {R d¢ Wo(xo,s,k)exp(-img), of equations { . ) implies that
Wo satisfies
. 1 imx-ioxOmJ

Y (XqyX,K) = J dm e
g0 (2v)n Rn

A(m,k) +

1 Xq im(x-E)—io(xO-gO)mJ
7Py | dg ame (a¥,)(£gsE.K)
(27)" e R, IR g

where A(m,k) is an arbitrary function of m,k. Thus Hy satisfies

imx-igx.mJ - igx.kd

] 0 0
u (XqsX,k) = —— { dm e A(m,k)
o0 (2m)" R
X im(x-g)-10(xy=g4)md=10(xq-£ Ykd E
’ (2])n J 0 ngJR dEJR an e o 00 (QUG)(EO,E,k). -
i -0

Equation ( . ) with ¢ = -1 and an appropriate choice of A(m,k) (see [18]) -

implies ( . ) where we have only used

im(x-g)+im(x0-50)d

] = - - =
(2m)" JRn ngRn e fle) - JRnd&;(E [x+(xg=59)d DF(e)

For real values of k1 one may relate u+ and u :

Proposition 2.2.

Let ut be defined by equation ( . ), then

PA(x*x

J) -ik{x+x.d)
0 ¢ (x,k)e o

+ - -
H (xotx9k) - U (xoaqu) = JR dku (XO,X,X)e
n

klk E Rn’

B T I R O U A L Lt P . R ]
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hwere f{A,k) is defined via

fx,k) - [R dm T _(x,m)f(m,k) = T _(x,k) - f_(x,k),
n

in terms of the inverse data

) =1A(g+Eqd) Tk (£+€4J)
T (k) % I dg,dge
Z R

n , Kyh € Rn.
(2m) n+]

T (") (£g,8-K)e

—

The derivation of the above result is similar to that of the

2-dimensional case (see [18]) and is outlined in Appendix A.

Remarks 1. Equation ( . ) implies that the relevant integrants are

analytic in kT for k] > 0. Thus, assuming that ( . ) has no homogeneous
[

solutions, u+(x0,x,k) is a holomorphic function of k] for k.l > 0.
I

Similarly for u . Hence, equation ( . ) defines a sectionally holomorphic

function of k1 having a jump across k] = 0. This jump is given by
I
prapasition 2 in terms of the inverse data T+.

2. Equations ( . ), ( . ) imply that u(xo,x,k) is, in general,
defined for complex values of k] but only for real values of kZ""’kn'
That is, we solve ( . ) for Ky € G5 Kypunnky € R. This is in contrast
to the results of [28] where ( . ) is solved for k ¢ ¢". Thus in a sense
we solve here a weaker problem and hence our approach is considerably
simpler than that of [28]. It is interesting that both the questions of
inverse scattering and of solvability of the related nonlinear equations
can be resolved using eigenfunctions of only one complex variable.

3. We note the remarkable fact that equation ( . ) is solvable in
closed form. This is because its kernel is strictly upper triangular.

22 21

For example if N = 2 then f =12, ¢ k) =

f dm le(k,m)T?](m,k); similar formulae exist for any N.
R

1

=0,




'

3 Proposition 2.3. ‘Q
: The potential q(xO,x) of equation ( . ) with o = -1, can be N
; reconstructed from R
. 2

ik(x+xOJ)

A A
!

f(A,k1,k2,...,k )

.. ] » -
q(xo,x) = - é;{Jl,JR dk]dku (xo,x,k)e N

n+l

~AK (x#x =0 ) =1 [ (Ky =Ky )X
, ‘o 0 178974 1

where 1~ can be obtained from

. R ’
1
. ) iA(x+x~d) A Tk (x+x~d)=T[(kq-kq)xq+(kqy=Kq)xqd ]
> [ dAu (xO,x,A)e 0 f(k’kl’kZ"'-’kn)e 0 17%1/%9 17%17%gY1
- R
o o 0 i o
k1 - k + 10 -

The function f(XA,k) is defined by { . ) in terms of the inverse data

X T, (A.k).

: - To derive the above note that ( . ) defines a nonlocal RH problem

in the complex k]-plane for the sectionally holomorphic matrix function

u(xo,x,k). By taking its "minus" projection [30] it follows that ;
u'(xo,x,k) solves ( . ). Also if one seeks an asymptotic expansion of

u(xo,x,k) for large Ky in the form u(xo,x,k) = [ + u1(x0,x,k2,...,kn)/k1 +

0(1/k$) one obtains from ( . ) q = -13u]. This and large k] asymptotics

of (. ) implies ( . ). é

0
3
~
A




T Tr————

8. Inverse Data and Scattering Amplitude Function

We now find a relationship between the inverse data T+(k,A),

k,A ¢ R an¢ the classical scattering ampiitude function S{k,\). T, ar»
defined in terms of uf, S is defined below: Let ¢(x0,x) be the gen;}al
solution of ( . ) such that ¢(xo,x) - F(x+x0J) as xy * =@ (it follows

from ( . ) with ¢ = -1 that for large Xg» sine q - 0, ¢ becomes a function
of x+x0J only). Then, by definition, the scattering operator S is given

by G = 3F, where G(X+XOJ) is the value of ¢ as Xg > . Equation ( . )

implies that % solves

1 im(x+x4d) x4 -im(g+£4d)
$(xg.x) = Fxixgd) + j dm e J d‘ioJ dge (a2)(gy,¢)
R

-c0 R
n n

Let F(x+xOJ) = 1/(2m)" [R dk exp[ik(x+xod)]?(k), hence

n

@(xo,x) = I/(Zn)n IR dk WL(xo,x,k)?(k), where ?L solves
n
ik(x+xod) 1 1'm(x+xOJ) Xq -im(£+£OJ) z
¥ (X4,X,K) = + dm e dg dge (q¥, ) (54:5,Kk) .
L0 n 0 L''=0 -
(27)" ‘R - R .

r

n n

Letting Xg = *=. the left hand side of ( . ) becomes SF and the right
hand side of ( . ) involves the Fourier transform of

f dsodg exp[-im(s+gOJ)](q¢)(50,5). Thus, the Fourier transform of SF
R
n+1

is given by:

-im(g+g,d)

(SF)(m) ¢ F(m) + (¥ ) (5928, K)F(K).

dk dg.dg e
n J J 0
(2r) Rn Rn+1

Definition 2.1.

The Fourier transform of the scattering operator S is uniquely

defined in terms of S(m,k) where

.........

..............
........
........................
. -
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o -im(g+gqd) §
S(m,k) 2 IR dgydge (a¥ ) (gy8,k) :
n+1
1 ~im(g+g,d) ik(g+god) n
= n J d€0d€1e (QUL)(anE7k)e s m,K £ R
(27)" ‘R
n+)
and ¥ is defined by ( . ), while b = Wtexp[-ik(x+xod)] is defined by
(using ( . ) and ( . ))
x i (XnEq ) kd
s lrgrek) = 1o [ dgge 00 qu ) (g elxgg ),
K € R™.

Proposition 2.4,

The eigenfunctions H,» used to define T+, and the eigenfunction

M used to define S are related via:
. im(x+xOJ) -ik(x+x0J)
H (XO’X'k) - UL(XO:X’k) = -fR dm UL(XO,va)e T+(m,k)e
n
R im(x+x5J) -1k (x+x9d) .
= J dm p (xo,x,m)e A(m,k)e , k,meg R,
R

n

where A(m,k) is expressed in terms of T (m,k):

A(m,k) - f dr T (m,t)A(r,k) = -T (m,k).

R
n

[f one studies the steps involved in establishing ( . ) and ( . )
the above relationships foliow by inspection.
Remarks.

I[. Equation ( . ) can be soclved in closed form. For example in the

2 x 2 case A =-T_, in the 3 x 3 case A(m,k) = -T_(m,k) - A(m,k), where
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all entries of X(m,k) are zero except {R(m,k)}13 = f dr{T+(m,r)}12{T+(1,k}
R

n
2. Using ( . ), one may verify that the second and third equations
of ( . ) are equal (see Appendix B).
3. Given u~, equation ( . ) yields T_, equation ( . ) yields A,
and equation ( . ) yields My -

Proposition 2.5.

Let M(X,k) be defined by

, -iA(g¥Egd) Tk(g+gqd)
M(X,k) % dgadg e (qu ) (En,85,k)e )
n 0 0
(27)" ‘R

n+]

Xk e R
i.e. T, = M. Then a) S(A,k) is given in closed form in terms of M:

S{A,k) = M(x,k) - J dm M(A,k)A(m,k), A,k ¢ R
Rn
where A(m,k) is defined in terms of = M by ( . ).

b) T+ are expressed via linear integral equations in terms of S:

hal = IR, hal hd
To derive the above results first multiply equation ( . ) by
T/(Zn)nexp[-iX(x+x0J]Q(XO,x) from the left and by exp[ik(x+x0J)] from

the right and integrate over Rn to obtain

M(x,k) - S(x,k) = -JR dm S(A,m)T (m,k) = J dm M(x,m)A(m,k), .k e R"

R
n

+
them _ projection of the first equation of (. ) yields ( . ) . Also

to equations { . ), (. ), (. ), (. ) corresponds analogous ones

............................................................

....................................

23

',

PR
.
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for u+, T_, P (where P(X,k) is defined like ( . ) in terms of u+).

To obtain these equations let u = u+, T+ -T,M-P. The _

projection of the equation corresponding to ( . ) yields ( . )~

R R T A e O L U LS P A
EGNR TR IR YO AR S TR TN TRV AR




The Characterization Problem.

The potential q(xo,x) depends on n+1 parameters, while the
inverse data (as well as the scattering amplitude function) depend on
2n parameters. Thus unless n+l = 2n, i.e. n=1 (the 2-spatial dimen-
sional case) the inverse data must be appropriately constrained.

Equation ( . ) implies that the right hand side of ( . ) will in
general depend on kz,...,kn unless f(X\,k) is appropriately constrained.
This provides the first method of solving the characterization problem
of the inverse data: Choose f(A,k) so that the reconstructed q(xO,x)
is independent of k2,...,kn. This corresponds to the well known "miracle
condition" of Newton [24] in the inverse scattering of the c¢lassical
3-dimensional Schrddinger equation. However, it has the disadvantage
that it involves p'(xo,x,k) which depends via ( . ) on f(A,k).

More explicit constraints on f(X,k) can be found by utilizing
the fact that f is defined in closed form in terms of T_, which are
defined in terms of analytic eigenfunctions. Actually ;; satisfy the
following "analyticity" constraints: B

Proposition 2.6.

Let

-ik(x+xOJ)
( dx e T.(X.k)e

iR —_
n

EjFXO’X’k) =

Then E_ satisty

£ (rgook) = [ degm () (2 rlxg-5)3K),
1

i.e. the functions E_, E_ are analytic functions in the lower and upper

halves of the k]-comp1ex plane respectively.

*
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To derive ( . ) multiply ( . ) by exp[ix(x+x0J)] from the left,
by exp[~ik(x+de)] from the right and integrate over Rn' Since u~ is
analytic in the lower half k]—plane, so is E_; similarly for E_.

Remarks.

[. The above analyticity constraint is conceptually analogous to the
faddeev condition [23] in the inverse scattering of the classical
3-dimensional Schrdodinger equation.

2. Comparing the above method of solving the characterization problem
to that used in [28] we note: In [28] the inverse data are defined in
terms of an eigenfunction u of n complex variables k]""’kn’ This
eigenfunction is not analytic with respect to any ki’ i.e. au/BEi £ 0,
and the characterization problem is solved by utilizing the symmetry of
au/aiiaij with respect to i, j. Here we work with eigenfunctions which
are not bounded for complex k2”"’kn but which are analytic with respect
to k1, hence the characterization problem is solved by utilizing pre-

cisely this analyticity.

D. The N-Wave Interaction Equations Are 2-Dimensional.

The N-wave interaction equations for potentials with components

Q1J(X0,x,t) are given by

ij_ i )
¢ 0‘1‘3“‘xo * . ](aij 2" %)%,

5] B])q13 -, )qilqlJ.

J
Equations ( . ) are the compatibility conditions of ( . ), in the
special case that the Jl's satisfy equations ( . ), and of

n

n
ue + T Bou, +i T k,[8,,n] = Ay,
Eogsr EXy s R




&K T,

Lha

‘-A .l ‘. ‘l *,

&
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where A and 8 are given by Al = -aijq13, aij = (8; - Bi)/(J; - Jg).

Hence, the formalism derived in the previous sections can be
used to linearize ( . ), also the time evolution of the inverse data

f(x,k) is given by

. n
SFIALKSE) = 4 ¢ (F(akst)k B - B F(A,Kk3t)).
3t i1 %2 7 %

(To derive (. ) use ( . ) in a similar way to that used in the 2-
dimensional case, see [30]). However, because of the constraint ( . )

the above formalism can be simplifiad.
Equations ( . ) can be used in two interrelated ways:
i)  From both equations ( . ) and ( . ) it follows that one may

introduce a new parameter k, which is a combination of k]""’kn

iff

S, U B, Bo L
Jz)kz = (J7 Jl)k’ for all i,j = 1,...,n.

(9 -

—_— 3

It is interesting that if equations ( . )} are valid, then equa-
tions ( . ) a}e always solvable for E. This fact will be illus-
trated later for the general ¢ case. Here we anly point out that
if N=2 equations ( . ) are always solvable. Hence, the inverse
problem for N=2 in n+l1 spatial dimensions can always be solved
using only one complex variable.

i1) With the introduction of a new E, the inverse data depends
only on 2 parameters. This suggests that if the Jl's satisfy

( . ) then equations ( . ), ( . ) are reducible to 2-spatial

dimensions. This is indeed the case:




Proposition 2.7.

Let J denote the matrix formed from the Jz's, i.e.

1 1 1 1 -1
o dg e 0y g /J
= [ 2o 2 PR W - SO
J=l 9] 0 g 7(31J2..Jp..Jn).J
NN N N “N
J] JZ e.. Jp .o Jn J
[f equations ( . ) are valid then
*2'_*2, 2'-»] -»2 -~ - - ->
J" =0+ (Jd - J%), Jp upJ] + bpdz, a, &, b constants.
Using equations ( . ), equations ( . ) with ¢ = -1 become
L]W]j - (qW)]j
{akL] + (1—ak)L2}\i’kJ = (q?)kj, k >3, 3 =1,2,...,N,
where
i, 3 i 3 i3 . 3 n 3 3 . N 3
L 2= dy ™™=~ dJyg—,1=1,2;, =—3% [ @8, =— , — % I b, —
BXO 1 39X, 2 aXZ 31 9= L 3%, Xo 4= 2 3X2
272
The transformation
3198 - dly,
0T TRt T T T Yo
1 1
yields . R
2 1 .
. : NN -w
i 3 i, 3 ) . 2 2 .
L' = === - Jy(==—+R =), i=1,2;, R* . R
%y 1 T3 L 4

Thus
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[=

; g
- J{ éi., on the characteristic coordinate t : —2 - R.
T E]

To derive the above results first note that ( . ) imply that

RS CIE S B G L I B A B R AL R L
which is the component version of ( . a). Hence there are two inde-
pendent row vectors 31, 32, which implies that these exist at most two
independent column vectors, say 31, 32, and ( . b) is valid. Thus

( . ) becomes

n

¥ ;
o, 21+, © b, 2+ qu,
de 22,=2 ZBXZ

Introducing the coordinates X7 X and then writing ( . ) in component

form we obtain

kj kJ kJ .
AR L S RNCAR
0 X X2
Equations ( . ) follow from ( . ), where for k > 3 we use
J; = Jg + ak(J; - Jg), p = 1,2. Thus there exists only two important

operators L‘, i=1,2. Using Xg = &g» &1 T X1 B0 T Xp + 8xg these

operators become a/ago - J} 3/851 + (S-J;) a/agz. For the existence of

. . . . f
a characteristic coordinate t we require

s -9} - J2
2 _ 2
J] - J2 "R-
1 1
The first equation above determines 3 (see ( . )), the second deter-

mines R (see ( . )).
Manakov [31] also suggested that the N-wave interactions are re-

ducible (see also [32]).

P A

....................
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E. Direct Linearization

The essence of the "direct linearizing method" [33] is the exist-
ence of certain linear integral equations (such as ( . )), the solution
of which are related via some formulae (such as ( . )) to the solution
of certain linear eigenvalue problems (such as ( . )). Clearly, the
above formalism provides a formal solution of the inverse problem.

Also, if there exist nonlinear evolution equations related to the under-
lying linear eigenvalue problems, such a formalism provides also a
formal linearization of the nonlinear equations. Further discussion of
the above method for one and two spatial dimensional problems can be
found in [34]. Many applications can be found in [35] and [36]. Here,
we only point out that, although the direct linearizing method is both
straightforward and effective in producing special solutions, it is not
suitable for solving initial value problems. This is because, given
q(xo,x,t=0) it is not clear how the measure-contour-inverse data can be
chosen (see below).

Proposition 2.8.

Let u(xo,x,k) be a solution of the linear integral equation in k,

1 ! o
u(xo,x,k) I JC do(k,k1)j

ik(x+xOJ) - —1k(x+xo J)- 1F( < /x+(k1-k1) J]
. d/\u(xo,x,k)e f(/\,:(1,k2,...,kn)e .
k] - k

~

where the measure do(x,k1), contour C, matrix f{i,k) are essentially

arbitrary. Assume that the homogeneous integral equation corresgonding
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; to { . ) has only the zero solution. Then
h s . iA(x+xgJ)

q(xo,x) $ -5 J Je dQ(A,k])JR dku(xo,x,l)e
N
- n

N -ik( x+x 1[ x+(k 1-k1)xOJ]
f(A,k],kz,...,kn)e

N solves equation ( . ).
E To derive the above results, define the linear operators Lk,

Pxo,x,f via
. s n

(L g)(xq>%) 3 59— 9~ £ (J,9, + ik,[J,,q]

\ ; )

K 0 axo 221 Z xl 2572
(PX xfg)(kl)“‘z’L( dO( A])[
0 e R
iA(x+x0J) - -ik( X*Xq 1[ (k1-k])x0J]
. dAg(xO.x,A)e f(x,k],kz,. ,kn)e
STRRY
By direct computation one may verify that
1~ ~ ik(x+x0J)
(P, 180G oK) = - 35 JJC do()\,k1)JR aAg(xy x.h)e
x f(X, k 1Koy ..,k )e .
1'°2
Equation ( . ) can be written as

u(xo,x.k) =1+ (Pxo,x,f“>(k1)‘

Applying the operator L, - ql on { . ) and using ( . ) it follows that
- 4 = - 1
(Lk Q)u(XO,X,K> pXOyX,f{(Lk Q)U(XO,X,k);.

Hence, assuming that ( . ) has no nontrivial homogeneous solutions the

- above equation implies (Lk-q)u = 0 which is equation ( . ).




BN AP

N
III1. THE GENERAL ¢ CASE .
We now consider equations ( . )-( . ) for arbitrary complex o. 2_
A. The Inverse Prablem E
Proposition 3.1. E
The solution of ( . ), bounded for all complex values of k and 2
tending to I for large k is given by .
. AT ) -
TJ( ) 13 (O’IJ;) e]B (XO SO’X1 57’k) \_
U (XaeXaK) = g + sgn - f dg~dE . N
0 i Jo O (g )-ad] (xg-5y)
2 1> 170 =0
i 1 -
.. J J .
ii,. . _ _g_ . . n . cn -
x (QU) (C’O'QI’XZ - (X<{ E]) J.' Yo ey Xn (X] E]) J] ’ k)s keC, g
] 1 ¥
where 81J is defined by R
y n o Jdl .ol X, (ok ) :
i] . ) 2 1'% ) , -
8 Y (Xq>Xq,k) ¥ L ——=[x.|o|"k, - ———11, Kk, =k, * ik R
s .
Equivalently u1J satisfies :
"
i . :
- Sgn(c Jd ) ;1 _ |
UU(XO,X,k) = CTJ + "—zr—f—l—j dEOdE(J-F:TJ dmzew (x g,m)) !
(27) R
n+1 n-1
ij t
1B (xq=EqsXy=Eq k) y .
R N IR :
x n -
1 b3
X178y = 9dq(xy-&g) ;
where _
2 i n J
ém” % dm2 - dmn, a (x,m) % § ml(xl - X 7 ).
2=2 J]
To derive the above note that the exponential of the second term ;

of the right hand side of equation ( . ) involves

944 1 m(x-g) - d0 £ 00 m o+ (0] - 3k Jxeeg). The real
B T A A A A A RS L SR VIR K
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part of E1J is given by E&J =

[N g b |

1

2=1

The second term of the right hand side of equation ( . ) also involves
the integral {xo dg ( dm,, which equals [XO dg dg dm +
; Jow O uats 0 0 1

+ j dEO J me, for arbitrary MT' Since the third term above can be
R M
1

canceled out of ( . ) with an appropriate choice of A(m,k), it follows
that one can always achieve boundness of u for all complex values of k:

. X
Choose M] such that E;J is less than zero in [ 0 dao and greater than zero
-0

in [m dgo, i.e. M1 = -E&J/CIJ} for G1J; > 0 (otherwise change sign).
X
0

The m, integration can be performed explicitly: The coefficient of m, in
e s 1(x1-51) - 1cd}(x0 - 50), hence this quantity will appear in the
.. n
denominator. Also E'J evaluated at my = MT becomes i I ml( 1-52) -

. . 2=2
_ . LIPS B K DS - .
(x1 El)JL/J1 + 18 (xO 800 X q1,k). Hence ( . ) yields equation
( . ) by using the fact that the integral over dm2 is a product of ¢

functions with arguments 3

5,7 %

2" (xx'ai)JL/Jé

Remarks.
1. Equation ( . ) with'n=1 is equivalent to the analogous one of 2-
spatial dimensions, e.g. equation { . ) of ([18]. Equation ( . ) actually
appears simpler because the m1 integration was not carried out in the
2-spatial dimensional case.
2. Equation ( . ) is also equivalent to that of [28]. The only
difference is that the exponential of [28] involves (xl-ig/J; instead of

(X]-E])/J% of (. ). However, these two terms are equal due to the

existence of the underlying 7 functions.

lopdim, + (9-93)(ek ) D5y )topdimy + B0

r .
D

r 7
P



3. By letting x, - x, + Ix, /Y, 2 = 2,...,n in equation { . ) one -
SIS TAe - .
may obtain a more symmetric equation for yu'J: N

ij I J:\"x 1] =i, i
M (XO’X];X2+—T_’--"XH+ i ) =7z + g (Q‘A)
J J
] ]
J] I
. 2, “n .
"(C,O,Cqs X2 + J.l C’T""’xn + J.‘ 51 k),
. . 1 ‘
where 39 is derived in ( . ).
i
' i i Iz
4. Equation ( . ) suggests that yu (xo,x,k) = (XO’X1’XZ - Xy T,
X Ji J]
1°n

,k). It also suggests that in the proper coordinate system

equation ( . ) should be in some sense reducible to only 2-spatial dimen-

sions. This is indeed the case: Equation { . ) in component form becomes

.. n PO n . . .. ..
ij i ij . i gy 13 1]
U +gf JuY+vioc L k. (J,-3d9)u = (qu).
X 2=l 2 2:] FOE R
Let K
= = x = = X ‘:.'1 = X - X _Y"_ r = 2
—O 0’ —-“ 1’ —r r ‘\ J1 1] b} ’n’
1
'
i.e. 3/3xg = 3/9%,, 3ax, = 3/35;, rE 2,0, 3/3xy = 3/3E -
AR DR B
z JrB/J133; Then ( . ) yields
r=2
ij i n i iy i3 ij
ud v odgue? + o T okg(dp - e = (aw)
=0 ! 2=1
5. Equation ( . ), as well as equations ( . ), ( . ) indicate that

the direct problem associated with equation ( . ) is in some sense 2-

spatial dimensional. However, the 2-spatial dimensional results are not

AR

e T T et .
s T SN
Y ONT . f}.{i + ]
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directly applicable due to the shifting in the arguments. Let us

illustrate this for the 2 x 2 case in 3-dimensions:

1
J
n R PR I 9
K (XO’XY’XZ) =1+ g ( )(’O’b‘}’ XZ - (X']‘&]) J])
2 1
J2
21 L 22V %
[. H (XO’X1 ,X2> =g ( )(EO,‘;]’ X2 = (X1'Q]) JZ )
1

Clearly u]1 appears with different arguments in the two equations.
4

ii However, one may still obtain a solution by iteration. The same is
5

true for the equations corresponding to ( . ).

Proposition 3.2.

a) The function 31J defined by ( . ) satisfies

181J(x0,x],k)

3 i i J
e = (x - xady ) - 3Y),
T 0-1 p p
akp 2JI I
and
i J
n o J. - J
(k) - 8k = AT, T s k- kg )RR k),
R =191 * R, I
1J . 1
k2 kZ’ ’kn kn’

where BlJ(k) denotes STJ(xo,x],k) and k;J li + 1k] = (k;J , k;J)
R [ [

b) The functions 3'9, o' defined by ( . ), ( . ) respectively

satisfy

where
i
.. n J . .
Ml el oM A k), Al ek o+ M, k), r= 2.,
M T2z 20 TN r rR T

To derive equation ( . ) just use 3/3k = % 3/ 3k, - i+ 3/3k,. To

derive equation ( . ) note that
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2 J i j
n . J J J Jv
Wiy « oy = 2 gyl 4 (L. r.r,r
I e ey A I LALC O ES
1 1 1 ]
But
PR 1 J 2 _ 41 L. 1 T
EI._ i: B i: + i: - Jr Jr <J1 Jl) (Jr Jr}
L L 1 1 2 2 1
Wy 9 Y I J7 I
Thus
2 1
n (0%-d)
2J 1] - Vg2 i 2 __.rr
37 (k)-8 (k) = 1 L34 )% ok, —x(ck )]+
r=1 I I J.l
2 i i J
A LA S
5T 0k 7 ke
I J1 r=] J] [
Hence slj(k) - 31j(k) = 311(k1j), where all k's are invariant except k1
. . . . 1] = ‘ 1] - _ - 1 - J 1
which satisfies k1I kTI’ (Jk1 )I (0k1)1 = (Gkr)I(Jr Jr)/J1
To derive equation ( . ) note that its left hand side equals
2 2
n Jr n 7 i x0|Gl rr
rEg(mr - M) (x - X1 SZ) * rE](Jr N Jr) oy
1
Lo 4 i - J i
) (37 = Jp) ol : ) (3. - 33) (ok,)q . (k) ) ; ii ‘-
W e J! op O =z gl T
1 1 1
2 i
noaz -y (ok )
-z A 1 a +MY']
r=2 JT V1
Hence, equation ( . ) follows where \'3 is defined by A}J = kI for
Al K's, (ox2)p = (ekdp + Mo, r= 2,0, (aay))) = (akg)) -
z Ml
pep T /9

Using the above relationships, au/3Ep, i.e. the departure from

holomorohicity of the eigenfunction u can be evaluated:

T e e Tt et e e
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Proposition 3.3. e

8 £ o

Let »'Y be defined by equation ( . ). Then

1] .
- (xo,x],k) 1 B

... g
2 (x1,x,k) = £y (I1-0Y)e
3*, 0 i,y PP (27)1"]

. .. .
xj dmle @ (X’m)T1J(k,m)u(xo,x,x1J(k,m))Eij,
R
n-1

where 3'9, o', A" are defined by ( . ), (. ), (. ) respectively,

Eij is an N x N matrix with zeros in all its entries except the ij=k
which equals one, and 71, T are given by

A B R P TR D
- i - i3 ] r -18 (3 XS ,K)‘1d (Q:m) i3 _
vy 3 ——f%LT——— , T J(k,m) B J diodie 071 (QU) J(EO’Q’k)'
To derive equation ( . ) note that au‘J/aip satisfies the same

equation as u1J where the forcing ;13 is replaced by

jR aMPexplial (x,M)TH (k, M)/ (2)™ 1, .
n-1 A

-~ Usingpu= ¢ u1JEij it follows that the forcing of the equation satis-
1,J

LIPS AN
Y (Jp Jp)eXD[1B (XO’X]’k)]

AR

fied by au/aEp is given by the above times Eij' Hence

-~ . . 3 f’ .
T A C AU ) "‘Ln‘-'TJ dmZT”(k,m)Ni (xq5x,k,m),
akp  1,J PP () R ’

where Ni is a matrix valued function satisfying an equation similar to

J
that of . but with different forcing:

, - = . v oS3 )

- Equation ( . ) implies that Nij = (5,...,§?

components of the vector Ni satisfy

[l !

J

-
A
-
Ca
<

‘‘‘‘‘‘‘




sl i
(87 (xq.%y,K) + 2 (x,M))
NH (g ok M) = e o 2 e FNE) (g k).

Multiplying by the negative of the exponential appearing in ( . ) and

using { . ) it follows that N; J( Xg X JK,M) = u21(xo,x,k1j(k,MM)).

:‘i 4
E
A
E
2
b,
»:.

. . I
NI “_r' DN

Hence

5

- .. .
N.. = (0,...,u (xo,x,k1J) = u(xo,x,A1J)Eij.

Using the above in { . ) we obtain ( . ).

Proposition 3.4

The potential q(xo,x) of equation { . ) can be reconstructed from

s -~

- lg 5 - I - '
- Jpj dkp dkp - (XO’X"1""’kp-l’kp’Kp+1""’kn)’ :
RZ R I :Jkp B

p=1,...,n,

q(xo,X)

where au/aEp is evaluated by equation {( . ) in terms of T1J, u1J- The

eigenfunction y is reconstructed by

_@L.(xo,x,k],...,k',...,k )

( 3k,

1

G( XA, X,K) = 1 + — | dk' dk' . , P=1,...,n.
0 T g Pp Pq kp - kp

To derive equation ( . ) inverse 5u in the variable kp. Equation K

(. ) then follows by a similar argument to that usad in Proposition 2.3.

Remarks.
1. The forcing of the equation for 5u/3k can also be written as

i J 1] i, .02
0" Jp)exp[1a Xq%q 1K ]t (kix,=x uz/J1....,xn-x1Jn/J1)tij, '
P r . :
wnere ¢+ dmPexplia’ (x,m) 1T (k,m)/ (27)" . |

. )
n-1

2. The results of the Proposition (3.4) can also be directly verified

(see below).




........................

8, The Characterization Problem

Equation ( . ) indicates that there exist n inversion formulae
for . Furthermore eguation ( ) indicates that, unless the inverse
data Tij are appropriately constrained, the reconstructed g will de-
pend on k. We now show explicitly that g being independent of k is
equivalent to the equality of all the inversion formulae. This is a
direct consequence of the following result:

Proposition 3.5.

Let

dkdekI

_]J
Rn-]

wnere

le(xO,x,k,m) : 31J(x0,x1,k) + a2 (x,m), kP denotes k1,k2,...,k$,...,kn.

R P I NI
dk ' dk Ty (J - )—*--:T !
R, R MRl P PR

Xgo%aK" am) oo Co

dm~e T1J(kp ,m)g(xo,x,,\m(kp ’m))Eij'

To derive equation ( . ) note that the term Lk(p g) involves

xo,x,k-xp,

SN S

r %




oA e

ey 3y

(20,

........

]
(&9 ]
nN

]
~
s

; n s . ij.p ; n ; n N
li{(=—~+02Z% J, 2y I(k" )JaE.; * (:==—+ s L J, =)gE., + ic T k,[J ,GE: + ], N
Xy 21 * %y 13 IXq =1 % %NS g2y AT :
»
while the term Py, x,k-k (L_g) involves i
0 p Tk -
3 n 3 " ij,p! ;
(=~ + 3% J, =——)gE,. +ic T A" (k" )[J,,qlE;.. -
3%y 201 23X iJ 121 L L ij E
Two of the above expressions cancel out, also since (gE‘.j)1 3 js non-
zero only if j=j' in which case equals g1 1,
NP RO [ LI B 1 M K TR ’
(=== + 5 < - c - = il TcC v 197 -
3%y =1 3x, 1] ax2 2= 2 axl »
n Ly s . 5
3 4+ .~ 1! 1] i’ -
[(axo on:] JQ, ) J b '..
r - .lljl - 1I _ J' 1'Jl - 1! _ J' 111
{9, 9E;] (9, -9y MeEyy) (J, - J3 09
. ity itio_ i T
(0,918,523 [o,.9] (b, =309 .
-~ . RS T S
Hence, [Lk’pxo,x,k—kpjg involves igg times
i J 1 J
n I L n \J - ‘J (1 n J - J 1l g ]
T [ Il T I
2=1 =1 91 l =1 R 91 M1 :
i o
;v N J n i n ) 1 t 5
i 2 - 1 1 1 p p -
J rom, ==+ £ Jim - ¢ (J. -J)(ik +kT +m) - ;
1ot J; NP T AP 2Ty g 2 -
i i
i ) ) n 1 (o4 v J J% n J .
(J% - \J1)[1k:13 +'-<$ - (kD +—8-kp ) % L. = -T.lm]. g
I R 271 91t =23y * :
The above expression equals ;
n 1 ' n ' ! - ' ¢ .
- 1 - J - - kp 1 - J - _kl J1 -JJ \

which implies equation ( . ).




Remarks.
1. The above proposition implies that the direct linearizing method
is also valid for the general ¢ case. Tne relevant result is directly

analogous to Proposition 2.8.

2. q = [L,.p Ju, p=1,...,n where the pth expression is inde-
k' x ,x,k-kp

0
pendent of kp. Suppose that g is independent of kp’kn’ then
Ju,

(L, .p u=1(Lp -, Ju. Hence (p Ju = (p
K xo,x,k-kp K xo,x,k kn

XA X K=K
th th 0 P

xo,x,k-kr

i.e. the p~ and the r inversion formulae are equal q is independent

of both k., k.

Proposition 3.6.

a) Assume that au/aip is given by equation ( . ) and that

Tij(k,m) is given by ( . ). Then

Cos n 2 ; ; j
T cm + — [ a0 M) ) TH ()

p P r rorpp
where
LIV 1 J 3 1 J 3
LY & (J. ~J¥) —=— (3. - J¥) =+
ro p p’ ¢ r r’ -
8kr akp
b) Assume that au/aip is given by equation { . ) and that
5 L .
a“u/skrakp is symmetric with respect to r, 0. Then T1J(k,m) solves (. ).
' To derive equation ( . ) note that
; 13,13 'ieij(go’i’k’m) i ,dyaulk) i dvsulk) g
: LT - JR de,de e (aL{agra Bt - (ap - R

- n+1 K, o}




R N P N
1 ! -1 J(QO’Q’k:m)’f 2 1 1€ / (%O’Q:‘(,M)
2 —_—— de.dz, e Ul aM= 7 ye
(20" Ja 50751 | 4 et
RE n+] n-1 »J

-‘;‘I/’ . i : 2 ! : : T . 'll RE
Tl \«,A)[(Jp-Jé)(Jr-J; )-(Jl-Ji)(Jé-Jg Vlau(a <<,M)Ej.;‘~.

. - i3 . . . .
Since (Utli') Y is non-zero only if j = j', evaluate the above at J = j
v}

[ P . . 3 .
. Also equation { ) implies -1 (k,M) + e~ (k,M) = -s’l(x volk,My -
; { | it

zl(m-M), and since j daOdg]exp[-iazJ (AZJ (k,M),]exp[-i;l(m-M)]
ii . Rn+1
: gy M) = THGE (M), meM), equation (L) follows.

i eisij(k) R PR L PORRORUE T BN
ro ’ rp LA sM rp K s

3Ny + ot + st T kom et ) = 3T Ik ¢ a (em),

<A TN Gm) LM =l Ik, meM)

fquation ( . ) follows from ( . ). Equation { . ) means that, with

respect to the operator L (x J) should be treated as i€ its x's

vt
r,p’ ~
ty

were not shifted; it is an obvious consequence of the definition o7 1

To derive equation ( . ) use { . ) to substitute for

3TN ) = M)+ 8 k) - a(m) - 3T (k) - ! (M-m). Ezuaticn
(. ) follows from the definition of PR
iy J{ Zq (9 - J{) n o Simdi o
qolkam) = kg e Tk —— - Ik, T—K )J—— - I 70 —F
R | 1 )= CI 1 ! =
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Cd it i it .
o} Jy = J n o} J, - 4J, n J
T e R N L IR '
o1 1 3 152 R I *1 I 222 ", .
3o LA N 5 g
T e e R A L T i
R J I I J 2=2 "R I I 4
1 1 1
1I
n J .
L (m+ M) —1%"’": X}J
2=2 J1
Let
.2 2 . c e i . . |
wr2eo 2w : | dmzy'Ll;){e“ (k’m)TU(k,m)u(:\U)Eij}. .-_.
3k 3k aEpaRr (2m)™" 1.37R
Using ( . ) it follows that c
1 i 2.1 ie”(k m), 1313 N
Au = T ‘Z J dm vy e ? (Lr‘pT Ju(x )Eij +
(ZW) 1,§’R 1
n—
oy arlid it5r i3 .
72n—2 g "J amlamey iy e7[e (k,m)+e (A (k,m),M)]T1J(k’m) I
(ZTT) 19Ja1 ’J Rzn_z ‘\.
N
(2m) 1,3,1",3" Ry 5
o i RERLPR R . o e Coer s
« etle T lkom) + et = O omy M I3 et 3 G m) m I G m)
£
* Bty
. JIR SIS N S LR I PO LI L . .
where T 4 (Jp Jp)(Jr Jn ) (Jr Jr)(Jp Jp y. Since Eij‘ij is non
zero only if i=j in which case equals Ei'j it follows that the above should
be investigated at i=j'. Then the first term of Au involves
Jdp Y1 exp[iel J(k’p)](L:.p‘]T1 J(k,p))u(k1 ‘](k,p)), while the second term R

involves (using equations ( . ) and letting m#M = p)
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PR

fidp dm v ylexplie! (k)T mMT T (kym),p-miu(a’ d(k,p). Thus
Au= 0 implies the “T equation” ( . ) (to obtain the identical variables

of (. )leti' =i, i+, p~mm M),

c. A Special Case and the Hyperbolic Limit

Equations ( . ), ( . ) indicate that one may introduce a new

-~ n . . . A
parameter k, which is a combination of k, iff ¢ (J;-J‘%)k2 = (J}-J%)k,
1

for all i,j = 1,...,N, i.e. iff equation ( . ) is valid. In this case
noo noooL . . ... .
i i3y, i_ 1] i

% <J2 Jl)kLI <JL J1)<3k2)I/J] (J] J1)(ck)I/J]
and hence 31J(xo,x1,k) becomes 3

— Jye

— )

J(xo,x,;).

—

[f N=2, or if equations ( . ) are valid then equations ( . )
are always solvable for E. To fix ideas consider the N=3 case. Then ?

equation ( . is solvable iff

)

n
2

% (3,-d )kz I 2

2
-Jf gl 233

J

— ] o

However, if equation (
1 2
- Jl

2
- J] J

are valid then
2 3
Jz - 93

2 3 - g
3 - 9

J J, - Jd

J

)
1
T
;-9

3
2 L .
1 3
1 1
Multiplying the above by k, and summing over % we obtain (. ). The
general N case is a trivial extension of the above where one uses
LIRS T_qdy 2 (qi_qd" i_J! . . -
(JL Ji)/(J1 J]; (J2 J2 )/(J] J1 ). From the above it follows that: A

Proposition 3.7.

- n . .
One may always introduce a new k = T (Jl—di)/J{-J% in equation ( . ),

1 !

provided that N=2 or the Jz's are constrained according to equation ¥

(. ). In this case the inverse data depends only on n+1 parameters




(;R,El,mz,...,mn) and the characterization problem is bypassed. This
is consistent with the fact that the T eguation now

The analytic eigenfunctions ut used for the solution of the hyper-
bolic problem can be obtained as a limiting case of the general o case:
Let g = -1 * oy, Kk = (kp, opk), op = 0. Then the limits k, =+

I
yields eigenfunctions ut respectively, analytic in the variable k]

R
The details can be found in [28].

APPENDIX A
In this appendix we derive equations ( . ), ( . ). Equations ( . )

can be written as

~

X , 1 (xn=Eq)kd
R J dEOJR dgdm E(xq-gq,x-5,m)e 00 (Qut)(iori,k) +
= 2n
1(xny=Eq)kd .
+ j dgo[ dgqdm E e 00 m_{qu”),
R1 R2n ¥

where E * exp[im(x-g) + i(xO - 50)md/(27)n. Thus if A = u+ - u then

T (xy=Eq)Kd
A= J dg,dgdm £ e 00 (7,qu" - 1-qu’) +

2n+1
X i (xq-£ )k3
+ J dgof dcamEe O O (qa)(gq,5.k).

2n+1
We wish to prove that A equals the right hand side of equation ( . ),
or, substituting this A in the above and canceling the exp(-ikx], we
need to prove that
1 XA\ i(A-k)x T(Xn=En ) Kkd
0 ¢ (x ke | dgydzan £ e O O

f d)\u-(xO’Xy}\)e
R R
2n+1

. 1£.kd
x (mQu - qu)e O 4
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s
X P{xn=5n)Kd ¢ i & A . N
: o] Py wee 00l awT(gpaiade O f(ak)el (MK i
. s 2n R ]:
» '*
v However, equation (A.1)” implies i
v . . .
Y ¢ - 1X4Ad " X Ad " "
- J diu (xo,x,k)e 0 f(k,k)e1(A k)x . f die 0 f(x,k)e1(k k)x iy
Rn Rn N
: X 1(xq~5q)Ad  _ =1{Xq=5n)Ad+ixAd oy
+J 0 dgof dagdmge O 0 que 070 0™ ¢ (n,k)e! (k)X
— R
3n
» x
The integrals involving of equations (A.2), (A.3) are equal. h
; To prove this let m+k ~ m, m+\ - m, alternatively use the following E
{ property of E:
. : , +3(xq=Eq))  T(xq=Eq)Ad
T(xq=Eq)kd iy 1(xq=£q)kd 1(X-K) (x+3(xq-Eg - 070 i(x-k)x
i Hence (A.2), (A.3) imply (by letting A - m in the second integral of (A.3)),
ix,mJ —
J die 0 f(ﬁﬁ,k)e"x(m-k) _
R
n
- . T(xq=5x) (A+m)J + 1(x-E)m _ 1EANJ
; @V g ane 0 Tl ) (5ghgane
- R3n+1
. iy 1(Xn=Eq) (k+m)d+i (x-£)m
. « f(a,k)e! (KX ] - [ dadggdm e 0 O
- (27) R2n+1
i . 1k
x (ﬁ+qu = 'T_QU )(goiiyk)e .
Multiplying and dividing the second and third terms of the above equation
-~ by exp[ix(x-£)] and exp[ik(x-g)] respectively, we obtain !
X - 2
0 f(m,k) = J dAT (M, A) F(x,k) = T (m,k) - T_(m,k).
) R
n L)
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APPENDIX B
We now verify that the second and third terms of ( . ) are

equal, i.e.

J dk{uL(X,X)E(K,X)T+(X,k)5(~k,X) +u (%GA)E(Ax)A(ALK)E(-k,x)} = 0,
R
where E(k,x) = exp[ik(x+xod)]. Substituting for u~ in the above by

( . ) and replacing A by ( . ) we obtain

. dA{uL(X,X)E(X,X)J

T, () A(mk) = [ or (G rIEC T, (F A AR KD BEGK 20,

R R
n n

which is obviously true by letting r - m.
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A Muitidimensional Inverse-Scattering Method

By Adrian I. Nachman*® and Mark J. Ablowitz

A formal solution of the inverse scattering problem for the n-dimensional
time-dependent and ume-independent Schrodinger equations is given, Equations
are found for reconstructing the potential from scattering data purely by quadra-
tures. The solution also heips elucidate the problem of characterizing admissible
scattering data.

In this note we present an inverse-scattering formalism which applies to a
variety of muitidimensional problems. Our procedure is based upon the use of the
so-called “3 method.” first introduced in the study of inverse scattering probiems
on the line by Beals and Coifman (1. 2] and successfully extended to two-dimen-
sional problems in (3]. This method gives a systematic procedure for finding not
only linear integral equations to reconstruct the eigenfunctions and the potential,
but also necessarv conditions which the scattering data must satusfy. These
charactenizauon conditions also turm out to provide an alternative way to recon-
struct the potential directly {rom the scattening data purely by quadratures.
Moreover, these conditions may help explain why there are so few nonlinear
evolution equations in dimensions higher than 2 -1 known to be solvable by the
inverse scattering transform. We give here our resuits for the time-dependent and
time-independent Schrodinger operators (for earlier treatments of the time-depen-
dent Schrodinger operator in one dimension see (4] and [S]); similar results for
first-order systems will appear separately.

Our approach is to first study the operator L,=0d/dr - A = v(t, x) with
g =g, +i0, any complex number with g, = G [here (1. x)ERXR” and A =
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] 9%/dx; + --- +3°/9x}). The case o = : will then be arrived at by a limiting

- procedure. One of the advantages of this route is that it always leads us to

Green’s functions with the suitable symmetry properties. For :he classical time-

independent Schrédinger equation our procedure yields precisely the Green's

function introduced by Faddeev [6]. Subsequently Faddeev [7] and independently

Newton (8] used this Green's function in their study of the three-dimensional

inverse problem. Although we arrive at the reconstruction by a different route,

our characterization conditions parallel those of [7]. More recently, in a series of

important papers (9], Newton has carefully studied this problem with new

S methods having the classical Green’s function as their starting point. We will .

indicate how our characterization equations compare with his “miraculous”
condition.

To begin, we assume o, *# 0 and look for eigenfunctions of L, of the form

pexp(ik-x + k-t/o)wherek SC" k-x=kpx+ik, x. k* = ki< -+ —k: and

find that u sausfies :

ATy

g ou, + du +2ik-vu = vp = 0. (1) .

- The Green's function we use is given by

PUGAS S £

G,(1.x.k) = o0 ~-t/f,g.,_c-_ak ;dédr. (2) -

w

vasg St

A solution p, of (1) is obtained by solving the integral equation g, .
=1+ G,(vu,) with G, the integral operator whose kernel is G, (1 =", x — x'. k). v
In this mostly formal presentation we assume for simplicity that v(r, x) is such .
that the integral equation defining u, has a solution for every k =C".

Differentiating the integral equation for u, with respect 10 & , produces another
solution of (1), which can be expressed nonlocally in terms of u using the
important symmetry property of G:

exp( ~ iB,(t. x, ko, 8))G,{t. x. kp k;) = G, (1. x. ¢, k,)

b 1
- -

- whenever(&d——k,) ‘ 0' ,] {3)
Ry

oA a e
LA

with B,(t, x, kg k. §) = (x -20L;<,)-($ - k). We obtain v
R

&k —2(t,x, k)

= -1 Byt k)& 3 f ___c_, ‘:__ IR E-_','. y
E ,mfem D(5,~ ke )8l (¢ G;A,) \‘AR-aRk,j]

)in

X T, (ke k. &), (e x. 6, k,) 8, (4)

.
-
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where the scattering data are found to be
T kg k; §) = ffexp[—zﬁ,(r,x.k,;’)] vle, x)p, (e, x. k)drdx.

The general Cauchy integral formula applied to the vaniable «. together with the
fact that u, ~1 as {k | — = allows us to write (4) in integral form as

1 (.Sl, - k;r)efﬁ.ll.x.k',e)
L s
'.1’(2‘-‘7) IURl kR/—k;z,+’(kl,°k;/)

. + XY

o, N\ %\
xs{(§+c—Rk,) -(I.ka;;k,) )
X T, (kg ki §)ug (1.2 6. k;) dkp dk; dE. (5)

where in the integral k3 = (Xg,.... &z ..... kg ), and similarly for k;. Equation
(5) is the reconstruction equation for . Comparing the large-k, behavior in (5)
and (1) vields

v(t, x) = ?a_x"// (f.x. kgok,)dkg dk, . (6)

The fact that (when n > 1) the right side of (6) does not depend on k, (1 * j)or
is analogous to the miracle in the procedure of Newton; however in our case it
may be deduced from the characterization equations which follow.

Our “characterization ¢quations” can be found from the compatibility condi-
tions 9% / Ik, 8k = 3° J/ak dk : differzatiating (4) and integrating by parts. we
obtain equations ‘which suggest th:n T, satisfies

dT, 19T, T, 19T, ,
(E "‘k )‘T*“z'“_é—’)_(sg—knl)('—;j*z a&}) = .VU[T,,], (,68'1/)

N Tk 8) = =i (5= ke )5 = 8= (31— ka )8, = )]

(2m) \og]
xs{( 8= i) =] kg 2L ))
og 'l Roag 1]
X T (kgohy 8T, (8 Kk, &) dE” (6b;,)
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It 1s also straightforward to check (6) directly from the definition of 7,. To avoid
redundancies we keep only the equations (6,,). We now parametrize the surface

(6= 2] = [kam 22t |

in (k,&) space in terms of (x,wo,w)et""'xRxR" as follows: kg =
Z/_zka -w,/2 -a,wow,/(7w ) kg == wWiXr = W/2=0wWW, /( w), j=2 2
kp = Z,-wa, vonowl/Ow hoKp = 'W1Xr,"'°RWoW /(7“’ ) §1=L0aaW Xa,
+w1/2~a,w0w1/(-w » &= -leR +w, /2= awyw, /(Qw" *). In the new vana-
bles, (6) can be written in mtegral form as

(T, 1(x" wyw)

l/ 0 ’ ’

II[TU](X'WO’W) = T,(x,wp,w) - -jf - dXR,Xm,
&, = X&, "“X/ X/_.)

= §(wy,w), (7)

where X' =(Xar-orXr--0X,) a0 O(wp,w) = [fe™ 7" (r x) drdx. We
have used the fact that when wy =2k, (§ - kz)/0g and w=§— k. are Kept
fixed, T(x, wg, w) = 0(wo, w) for large x, (if wy = 0); thus is the analogue of the
Born approximation.

It seems reasonable 1o conjecture that (at least for small perturbations v) the
main condition needed to characterize scattering data is that [[T,j(x, wy. W) is
independent of x and ; and has suitable decay properties in ( w,, w). Moreover, it
seems reasonable to solve the (re)construction problem directly from (7): namely.
if T, is admissible, compute v by taking the inverse Fourier transform of /(T ).
As opposed to the Born approximation, this formula for reconstrucuon does not
rely exclusively on hugh-energy values of the scattenng data.

Next we treat the case o= as the limit of the above. The lmit of
u,(¢, x. kg, k) does not appear to provide enough information (when &, = 0) for
reconstruction purposes; we consider instead p (7, x, kg, 9g4,). Since

G,(t.x, kg, apk;) = G (1. x, kp.k;)

lS@(’I) -:/(flclk CE)=ix-§ 2 L) ’ '
- - L \0 Ie c._(k - SC £
(27) / { (5 R=X;) ))as

as a =1 (0g <0), our limiting ¢igenfunction u (7. .x. Kz. &) soives the integral
equation p, =1+ G (vu,); v, {1 X Kg k) is 2 solution of u, = Jp =21k 5 T
- v =0 for every value of the parameter k,. Taking lmuts in (3) vields the

F LT e e e e e ma
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- N . .
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integral equations for reconstructing u,:

T R AR
#L([,.r.kR.k[)=1~ 9 n/-')} 1 ’ - R ’ .
m{(27) KR“—/CR:—IO kR'—kR‘,“'IO

\

x3((&+ ki) = (kg =ki)lnclr.x 8. k;)
X |4 = ki ) T(ka k7. §)
xexp( +iB.(t.x. k. kj.§)) dky dk; d§. (8)

where 4(-) is the usual Heaviside function, B,(r.x.kg. k; 8)={x=2tk,)
“(§ — kgp), and the scauering data are given by T ik, k. §) =
Jjexp{ =B, (t. x, kg ko §)lv(r. x)p (1, x. kg k;)drdx. The characterization
equations (7) now become

Blx,-xi 1 8(xi-x.)
1 X; = X7 X~ Xy,
; g w) = Ty gy w) = & -

,,[ L)X, W w) L{X.wp, W n’// Xz =Xz =10 XR‘,-X’R,-‘-[O

;

x N [T (" wy, w)dx e dx

= 5wy, w) (9)

with the obvious modifications in the defimtion of .V [T,] and in the change of
vanables.

It should be remarked that the above limuting resuits can also be obtained
directly starung from the Green's function G, (the denvative with respect to the
parameter <, essentially plays the role of 2).

When v does not depend on s, the equations above formally vield the
following results for the time-independent Schrodinger operator (n >1). Again,
all of these results can be independently established without recourse to this
derivation (assumung, as before. that the potential is such that there are no
exceptional points in our integral equauons). The Green's function is now

-
G (x. kg k) -/ Golt.x ko k,)dt
-

AR et 2 Sl - 4w S e o o
.
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and the reconstruction equations are

+

9“‘/ ,] 9“‘; —kl.)
(2 ;
-0 kR,-/c;,’—-iOJ

u(x, kg, k;)

X 8(kj-(§=kz))8(&* = ki )w,(x. 6.k
X (§ = ki |T,(kro kj. §) explix- (6 = kg)] dky dk; d§

(kp®0, k,#0), (10)

ARG ol par - -
T N T e R Y T W T S
"

where T,(kg, k, &)= fexp{—ix-(§ = xq)|o(x)u,(x kg .k )dx. Using the same
change of variables as before with w,=0, we can write the characterization

equations as

81x; = x;)

8 x, —x1,
I/[T:](Xvw) = T:(X~W)'ff X "‘{'X’ _I_fo -
R/ R/

Xz, = Xg, ~i0
XN [T w) dxe dxi = o(w). (11a)
where
YTk ) = s -l = ka6 - 60— (8= ko )18, - §)] 8(87 = K3)
X8k, (&8 = kp))T(kgok; 8T (6. %,.8)dE". (11b)

[f the scattering data T, are given, then we use (11) to check admussibility and
reconstruct v. Suppose, on the other hand, that we are given the scatiering
amplitude A(kg, &)= fexp[—ix-(§~k)lv(x)u.(x. kg)dx, with u, corre-
sponding to the classical Green's function

xkg) = - (.,1) j expl(ix-¢) dé

§2+2kp £~i0"

A 1s related to T, via

T(xp hk; §) = dlkg§)= (—,‘)‘—T [0k, (kg=§ 1808 = k)
X T (koo §)A08.8) 8" (12)
T R T o S e T o S T R L SN ST
AP L VRPN




A Muitidimensional inverse-Scattering Metnod 249

Solving (12) for T, and checking that [ [T;](x.w) is independent of x and

should now be compared to Newton's procedure. where, given A, an integral
2quation is solved to find a candidate for the potenual, which has 10 turn out
independent of certain additional vanables.

Finally, note that (11) is equivalent to the following statements together: (i)
9T, /9x, =2mN [T), and (i) im,, | _ (T, - ) is. as a function of X, . the
boundary value of an analytic function in the lower (respectively upper) half
plane with appropriate boundedness properties. Any solution T, of (12) can be
shown to sausfy (i), while (ii) corresponds to Faddeev's condition for admissibil-
ity.

A more detailed study of the equations presented here will be published
elsewhere.
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Multidimensional Inverse Scattering
for First-Order Systems

By Adrian I, Nachman® and Mark J. Ablowitz

A method for solving the inverse probiem for a class of multidimensional
first-order systems is given. The analysis vields equations which the scattering
data must satstfy; these equations are natural candidates for charactenzing
adrmssible scattenng Jdata. The results are used to solve the multidimensional
N-wave resonant interaction equations.

1. Introduction

The inverse scattering problems for the hyperbolic and elliptic generalizations in
the plane of the m X m AKNS system have been successfully studied in [1] and
applied to the linearization of several physically significant ncnlinear evolution
equations ( .V-wave interaction, Davey-Stewartson. etc.) in two spatial and one
temporal dimensions. We indicate here how the method used in our investigation
of the n-dimensional Schrodinger equation (2] can be applied to the study of the
inverse problem for the operator in R” ™!

L - Q(x,, x). (1)

7

3 1
=2 — - )
= axo g .- j,

L x,

'

Here J, are constant real diagonal m X m matrices (we denote the diagonal
entries of J, by J!..... /" and assume J' = J;/ =0 whenever ; = ;); the matnx-
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valued off-diagonai potential Q@ =(Q") may depend on x, as well as x=
(xy.....x,)and o =g, — 0, 15 3 complex parameter.
The operator (1) is associated with the nonlinear svstem

tf 1 30
Bt Tl - - e, a0 2

ot o Y dx, T dx, -
with
a,=u. 1glign, forsomereal 8,1 /< n.1gism. (3)
J j/_J[l

Even though no traditional scattering operator exists in the case o, = 0. the
so-called 3 method (see [2] and references given there) gives a satisfactory
definiton of scattering data for L, along with a systematic inversion procedure,
which we use to solve (2).

A sulution of the inverse scattering problem for the hyperbolic case o, =0 is
then obtained by a limiting argument; thus we can avoid a separate study of a
Riemann-Hilbert boundary-value problem (which in ligher dimensions may also
involve some geometric complications). The main advantage of this approach is
that it vields (from the compaubility conditions associated with d in several
variables) equations which must be satisfied by the scattering data. In addition to
their importance for the problem of charactenzing admissible scattering data.
these equations have several consequences: (i) they provide a formula for recon-
structing the potential from the scattering transform purely by quadratures {in the
generic case when no three of the vectors Ji=(J{. /Ji.....J)). 1<i<m. are
collinear]; (ii) they show how one can recover the scattering transform from iat
least small) data given on certain {2 - 1)-dimensional surfaces (n ~ 1 being the
number of vaniables in Q); (i) they may indicate what other (possibly nonlocal)
evolution equations could be solvable with the [ST developed here: (iv) they
constitute in themselves a new class of multidimensional nonlinear systems of
integrodifferential equations which are linearizable.

2. The case o, # 0.

We will denote by k = (x,,....k,) =k + ik, a point in €" and will often write
f(k) instead of f(kg, k) for an arbitrary function of &, and k.

As a first step in the ¢ procedure we construct a family of solutions of L,y =0
of the form ¢ = u(x,, x, k)exp(iL]. &, (x, = 0x4J,)] with 1 bounded; u will then
satisfy the equation

=

a,c ”a:k:['jﬂ-/‘] = Qu. ()
X, ,

[

Jy

1.

s,
dxy .

<@L

The generalized eigenfunctions «, = (u'/) we will work with are obtained bv

hbaliatal Sl Yk Ak and o sl el od v“n'v.]
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solving the integral equation u, = [ = G,(Qu,). i.e.
' Ky = 8!/ ‘}/ G;'l(-"o'.Vf)v-"',V‘k)(Q(."ba}’)Pq(,Vm,V-k))", dvydyv. (3)
nn~l

where the Green's function is given by

x(xl,g‘o-x-:‘)

Gl(xg, x. k) =
(to X ) (‘,v)n‘lf./‘nvltoq-o‘zl_ [J&/"k( j/)

] dg,dé. (6)

For brevity we will assume here that Q is such that this integral equaton has a
bounded solution u, forall x€C".
G, can be computed explicitly by contour integration:

o J! )
G;’("o»'f-k)=*isiu— a(“‘k)n‘s"‘t"—?‘l) ™

2mi{ x, ~ af{x,)

af(xq,x, k) = 2 (8)

S~ )
[=-} r

\|a| Xok; = —(ak )

. = . .. 9G
The next step is to express dp in terms of u. We start by writing N and hence

Y-
:;f —=—(Quw) as a superposition of exponentials:

V1 a(J;—J;)/
2ilo,i(27)" Jre

8: : j/,l\l)e:B;/(,r.,..:.k..\xT;/(k'I\)d’\ (9)

L=l

n

Bi(xg, ¢ ko N) = af(xg,x, k)= L (x,—0pd/x5)\, (10)
{=]

T;/(k' ,\) = f/ le-'B:,(M'v'k."\)(Q(.vov,V)P'q(.,vo- _V.k))l/ d,v,,d,v. (1)
e

The calculation of du is then based on the following crucial symmetry
property of our Green's functon:

e T A NG e X k) = Gl Xy, X,k (kX)) whenever Y J/\, = 0:

) (12)
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here 7(",/’(/(. A) is the point in £” whose /th component is

7 J=J ‘
(k;/(kv‘\))/ = (ok)),+k, + A (13)
o,J/

Once (12) has been established. it can be shown [assuming that (5) admits no
homogeneous solutions] that

auq (‘/'-J/)
dk, 3%, T <ok §21l0/|("r)

f (Zj/'\) T k \)e’Ba’(‘q X k. A}

X, (%0, x. k(k. N))E, dX; (14,)

(we have denoted by £, the m X m matrix with entnies £7 =8 § ). If we now
fix all &, [# p. and apply the (1-dimensional) inhomogeneous Cauchv integral
formula

o
i D U s
f( 2mi ,..,’_R:'-Zdz +277l/ 1< R - Nz (13)

to the vanable k,, we can convert (14,) to an integral equation: noting that

B(xg,x, k)~ [ when |k,| = [and denoting &' = (ky,....&",,.... k)|, we have

6 * 8(2-/[,/\1)
po(xg. % k) = [~ ————F (V=] —— LTk )
Y lo, K.,q)n-x o p P)/./f kp—k;

- X @By (xoux KMy (e k(K /\))E,/dk dk}e,dk}’.

(16,)

[More generally, one can use (15) with f(:)=p (x4, X,k +:0), : €C, with &
fixed and with an arbitrary v € C" which is not perpendicular to any of the
vectors J' ~ JY, i # j.] The matrix-valued function T,(4. \) defined in (11) is our
scattering data, and (16) is the inverse-scattering recipe for reconstructing p from
T. Once u is found, the potential is easily recovered:

O(xq, x) = Uak Xo.x. k) dk g dk; (17)

’

-
On the other hand - given an arbitrary T(k,\), to applv the above inversion .
b Y
....... n., \"
\:,
N
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are compatible; requiring that 3%/ 9k, 9k, = 3°u/ ok, ok. yields the following
characterization equations for T:

aT, T,
/ a= - ) - - -]
e, = (1 -7) iy (1= 77) == %
B ey LT LT
+ 20,(JP JP )(jr Jr)(.}: aA’ Jp‘ akp

' . i v ‘ I % it I
=NT,] = W;[(jp “f,,/)(fr =)= “J/)(jp“-/p )]

Vs IS ’ n"‘z' ’ jl' ’ ’ :
xfa(zj;,\,)r, k)T, (k f(k.x),,\-FA)d,\. (18:2)

For compatibility, (18") need only hold whenever ZJ/A, = 0: however, one may
also verify that 7, when given by (11) satisfies (18) everywhere.

[t turns out to be very useful to recast (18) in integral form. [t is enough to
keep only the equations (18,,). We then look for a parametrization of the
hyperplane {(k,A)€C" XR": L j/A, = 0} by new variables (x, w,,w) EC""' xR
X R”, so that, in the new coordinates, £/ = 5/82,, 2gpsn and
Bl (xq, X, k, A} = Xqwy + x-w; these requirements determine (up to a translation
of x) the following (invertible) map:

k,:(]{—jl')x(‘ [z 2,

= ¢ 1 ’ g [
kl=Z(j[—Jl})X(+ oWy Yf,w,).

(=2 ' Ji=J{\al* (=1
N AT A
N LI VO S
orJ;
N RV A T A7 J/
A= L [ — ; OX) T W |- (19)
(=2 oy H

To use (15) as before. we need the limit of T for jx | large (and x,, [ #* p. wy, w
fixed); this turns cut to depend on whether for some r #:, ; we have

(I =300 = 3g) = (3= I = 7). 20)
For brevity we consider only two cases (the only ones arsing in the study of
(2)—see the appendix|:

Case I. Equation {20) does notr hold for any distinct i, ;, 7 and any p =1.
Case II. Equation (20) holds for all «, j,r, p (in other words, the vectors
Ji....,J™ all lie on the same line in R").
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256 Adrian |. Nacnman and Marx .. Ablowitz

In the generic case [ we have

im T/(x.wy.w) =Q’f'(wg_w)_ 121)

1Xp1 ™ ®

and (18,{) becomes

BT Mo wouw) = Tl wow) = 2 [ 2= i
= Q'/(Wo'w)’ (22y)
where
Q'/(WO’W) = /fe—l(xow')*x-w)Ql/(xo'x) d_x‘)dx and X' = (x: _____ X;J""'XH)‘

If (20) holds for some r # j, then (21) need not be true (see (7). (8). (11)]. In case
I we have 9T"/3%,=0 for all p, 2 p <n; this. together with Liouville's
theorem, allows us to replace (22,) by

T,/ (X, wo.w) = T,/(wy,w). (224)

In case I we conjecture (as in [2]) that the main condition needed to char-
acterize the scattering data is that [,/[T,](x, wy, w) are independent of x and p
and have suitable decay properties in (w,,w); furthermore, given a 7, which
passes this admuissibility test, we can (re)construct a local potential Q simply as
the inverse Fourier transform of /{T].

From (22) we see that T" is completely determined by its values on the
(n + 1)-dimensional surface x = x,; the analogue of this in case [ is the following:
given T./(xq, Wo, w) = G"(wq,w), 1 4, j € m. we have [from (22/)]

T (X wo,w) = G wy,w)

-/’f nl. T ](’( WO’ ) - ~V;1/[Tw](x5'“’0v“’)
XOp_x;

which (at least for small G) could be solved to find T evervwhere.
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3, Thecase o= —1.

If we formally substitute o = —1 in (6), we find that, away from the hyperplanes

> g {(keC": T/ \(J! = J Yk, =0}, the sigenfunction p_ (x4, x. k) is well de-

fined and holomorphic. Thus it appears that the inverse problem for the hyper-

. bolic system L_, could be regarded as a Riemann-Hilbert problem with data on
the hyperplanes £, 1<i< j < m. We prefer to obtain an inversion procedure
from our results for o, # 0. There seems to be little advantage in studying the
limit of u,(xg, x, k) as 0 — —1 (it leads us back to an analysis of singularities on
the hyperplanes Z, ); we work instead with the imit of u,(x¢, x. kg, 9,k /), with
k, now playing the role of a parameter. From (6) we find

im G,(xq, x kg, 0k;) = G, (x5, x, kg, k;)

g— =1+

‘ 9 Lim J 5: ( kr,)(-’xl— j/)”
" @) "*//~~\s - {Js+k i =at)] +i0
—/-1 i t i

+9( ey {J/‘s/ ( k/,)(J/'*j/)])\l)
5o’~1—1[~ft'51“‘kR,(j:"'j/)]'lo )

el g d, (24)

with 8(-) the Heaviside functon: correspondingly,
lim, .y o, %g, X kpoork) = pu (x5, x, kyg, k).

where u, solves the integral equation o, =/ + GL(Q,uL). From (24) we see that
w (xg, X. kgs ;) 15 a solution of

- du ~ du i n
P —/E_:lf,yx-; 1Y kg {Jn] = Qu (25)

(=]

for every value of the parameter &, in R". Our scattering data are now
T (kg ok, N) = ,U le"B'L”'""'x'k"k"'\)(Q(Xg,-t)H-L(xo,x,kR.k,))udxgtix
N

(26)

with

By (xg, x. kg, k; N)

= S (0= I ek = I kg ~ k)] = L = i )N}
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Taking limits in (14), we find the reconstruction equation for u:

! (e
ne-l Z(JP—JP/)

pelxg,x kg ky) = =——7
(:7) Loy

G(k, ‘ B{lk}"kl)

)| e by,

X T (kgoky, n)eBE e x ki ki)
ol v kb D Dbl (T

where now

———k, X\, and (kY), =k,

]

To write the charactenzation equations for T,/ we introduce new variables
(suggested by the limit of (19)] (X &> X /- g, w) € R’"~! to parametrize the hyper-
plane £J/A, =0 in R’" as follows:

Kp, = ('/'./"Jf)XR,v [ 22,

el 1 n
= ] - -5
K, /;I(J/ ‘II)XR, -7 Wy /‘:lj, w,
k= J{=J)x;,. 122
k/’i“/'f/)xf‘* ! wn;
1 {-:‘ f J,"-J{
(=TT =T)
A= { 1)(, - —{(Xa, —Xs)* W [z 2.
J;
AN ATINAR A J! ]
\ = Y‘ . {2 - )——“W'l (128)
p j!: YR, X/, jl' J

Then under the assumption of case [ in Section 2. the limut of the equations (22,)
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vields

) = ¢ Ll Slxnmxn) Ok xa)
TP (xa X powaow) = Q0w w) = = — - —-
o ’ // Xr,~ Xz, 70  Xg,~Xx&,—10

X N [T 1(x o woo w) dxe, dX
with v, [T, ] given by a slight modification of (18). In case II we have

TL”(XR?XI‘WO'W) = TL,/(W()’W)- (29[[)

As in Section 2, we can now use (29;) to characterize admissible T, and
(re)construct @, as well as recover T, from data given on x 5 = const. X, = const.
[t should be pointed out that once the farmly of Green's functions G, has been
chosen. all the above results can be denved without recourse to our limiting
arguments [V, 4, can be expressed in terms of u, using the appropriate
symmetry property of G,, and the analytic behavior of u, for &, large—needed
to establish (27)—follows from (24); these analytic properties, together with the
compatibility requirements d°u/ 9k, dk, = 3°u/dk, Jk . imply (29)]

4. Relation between T, and the scattering operator (o = — 1)

To fix notation we sketch an elementary definition of the scattering operator
associated with L _,. When @ =0, given f:R" = R™. the solution of the Cauchy
problem L _ u(xy, x)=0. u(@ x)=/f(x) 15 «'(xy x)=/"(x ~xy])...... ¥, +
xo/) 1<ig<m. which we write as wix,, x)=flx—x,J/). When Q is. say.
smooth and of compact support. given any (reasonable) f:R" ~R™, there s a
unique u solution of L _u=0 with u(x,, x) = f(x ~ x,J) for x, <« 0: further-
more there is a unique g such that u( x,, x) = g(x = x,/) when x, » 0. We wnte
g = Sf. On the Founer transtorm side S can be wrnitten as

1

(27)"

SF(8) = (§) + == | S(&.4a)/1%¢) 2k (30)

The question we would like to address is how 10 recover T, (and hence Q) given
S(& kg). Torelate T, and S(&, £ 5) it tumns out that we need to relate «, and the
eigenfunction w(x,, x. k) corresponding to the ™ Volterra™ Green's funciion

r n n ‘
G xy,x, ko) = 9(.rﬁ)expl—z 5 (x,—-,r,).//]/ckl Sx, = x,J ). (31) T
s =1 "
We start with the ideatity
".
"V
p u, —u = (G, -GN Qu,)~G(Q(u, =u)). (32)
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a a0 8

: write G/ — G/ as a superposition of exp(iB3;'). and use a suitable symmetry N
L property of G. The main result is the following /inear equation for T, given §: ~

Ti'(kg k) = SU(kg(kp Ky N). Kg)

» T T T

1
(22)" ;/’;" (z}:-lj A }

X S kif(kgok N, ki (kg k; NYYT(k gk N) dN,
& (33)
where ki(k z. k;. \) stands for the real part of k.

5. Applications to nonlinear equations
The equations (2) are the compatibility conditions (¢f. (3]) for the Lax pair: ..;

. 54 .
Ly =0 and az’ZB'a = Ay (34)

the matrices B,. 1</<n. are constant real diagonal. and AY(1, x4 x) =
(1/0)a,,Q"(t. x4, x) with g, given by (3). The restrictions imposed by (3) on the
matrices J,, 1 </ < n, are discussed in the appendix. To find the time dependence
of the scartering data corresponding to (2), we set ¥ = pexp[iL], k,(x, — ax,J, -
tB,)]; then p satisfies (4) as well as

=—-ZBd#+ts‘k[8‘,.p]—.~m=0. (35)

< [-] .

Applying the operator & to both sides of the equation (14), we find (when
o, = 0)

37’”

)=1T[B,k—3k (k)| T kN, (36)

(=]

For the case o = —1 the equations {obtained as limuts of (36) or by a parallei
derivation] are

T A A

497."' Z . 1
e ltkg ke N =0 D (Blkq, = Bik kg k, N Tt kg kN, (37)

L]

- Thus, when g = — 1, we can apply the inverse scattering procedure together e
" with (37) to construct the solution to the Cauchyv probiem for (2). Note that
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T (t. kg, ko A) as given by (37) sausfies the characterization equations if

T,(0. kg .k, A) does.
. When o, # 0, the Cauchy problem for (2) is ill posed: however (by analogy to
the corresponding linear problem) we can use inverse scattering to solve (2) as
follows: given Q(0, x,, x). it can be decomposed into Q _ (0. x,, x)+ Q@ _ (0. x,4. x),
where @ _(0. xq, x) extends to a function Q _ (s, x,, x) sausfving (2) in the half
space ¢ >0, while Q_(0. x,, x) extends t0 a function satisfving (2) in the half
space ¢ <0. Assume for simplicity that a,q, >0 for all 1= j. Given Q. define
Q. by Q. (0.wy,w)=8(F wy)Q(0,wy, w). If T_ is the scattering transform of
@ -, then from the direct problem we find T2/(0, x, wy, w) = 0 for w, > 0; thus for
t > 0 we can define (see (36)] TY/(1. x,w,, w) by

T

TU(t, X, Wy, w) = exp{u S (Bik, - B,fkﬁ/)JT‘.’(O.x.wo.w)

[

[see (3).(13).(19)]

a n i 5
= exp[:t{ fW’J*' > la, g - B;)w,)}f‘_f(O,x.wo,w).

(=1
(38)

Since the expression in the exponential does not depend on x and since its real
part is nonpositive if ¢ > 0, T/(+, x.w,, w) satisfies the characterization equations
(29), so inverse scattering should yield the desired potentual Q _(r. x,, x); simi-
larly. we construct Q _ (1. x,, x), solution ot (2) for : < 0.

Appendix

We need to find the restrictions imposed on the choice of matrices /, 1 </ < n.
by the existence of (a,)) and B. 1 <! < n. satistying (3).
If (5) holds. then the matnx (g,,) is symmetric and

J=J!
a,=-a, = (a,;-a;/)-}::—; (Al)

for every / and every i p disunct. [Conversely. if {Al) holds with (gq,)
symmetric, then B, 1</ < n, can be found so that (3) is sausfied.] Note that if

a.,=a,, (Al forces J'. J'. J? 10 be collinear. There are two cases:

loa,=a, foralli ;. o disunct.  Then (Al) puts no restrictuon on J.: in
parucular, they can be chosen so that «20) does not hold for any disunct 1, /. r
and p =1. The svstem (2) 1s linear in thus case.

1. For some 1. jy. py disunct. a. , =ua, . We show that in this case the

vectors J'...., J™ must ad be collinear. From (Al) we already know that
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262 Adrian i. Nachman ana Mark J. Ablowitz
J'n, JJo, J?0 are collinear. For any r =1,, j,, p, one of the following must be true:

(i) a, =a (1) a., = a (A2)

1 =
(1) a'o’ rty LY-DN L] JoPo

a,jo.

(for if not. a, oy =an,=a, =a, contradicting our assumption). In any of the
possibilities (A2). J vull be on the line passing through J* , J?0, J7o this will be
true for any r, 1 < » < m. (Conversely, given J', J=,... . J™ collinear with Ji = JY,
we can construct (a ) symmemc satisfying II and (-\l) ]

It follows that whenever (2) is not linear, the matrix having J'. J*.....J™ as
rows has rank at most 2; if n > 3, its columns {the diagonals of the matrices J, in
(1)] must be linearly dependent, and the inverse scattering problem for L, can
also be solved by reducing it to a lower-dimensional one. On the other hand. since
the characterization equations are trivial [i.e. V(T)=0[ in this case, it seems
reasonable to expect that other (possibly nonlocal) nonlinear e¢quations can be

. found which would be compatible with (22;).
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The paper deals with the direct [ineanzation, an approach used to generate particular solutions of
the partial differentiai equations that can be solved through the inverse scattering transform.
Linear ntegral equations are presented which enable one to find broad classes of solutions to
certain noniinear evolution equations in | — | and 2 + | dimensions.

PACS numbers: 02.30.Jr
1. INTRODUCTION

The partial differential equations |PDE's) associated
with the inverse scattering transform (IST) (see, for instance,
Ref. | for detailsi are structurally rich. It is clear from the
work done in this field that these equations admit many
kinds of approaches and studies. Broadly speaking (see, for
example, Ref. 2, it is possible to group these approaches in
two different classes: “algebraic properties” and “methods
of solution.”

Among the algebraic properties one can associate with
each of these PDE’s are the existence of an infinite hierarchy
of equations characterized by the same linear problem: the
existence of infinitely many conserved quantities and of a
Hamiltonian isometimes bi-Hamiltonian) structure: the pos-
sibility of associating with these equations a so~cailed Back-
lund transtormation :BT)—i.¢., a nonlinear transformation
connecting different solutions, etc.

The methods of solution developed so far depend of
course on the specific problem that one has to solve: the [ST
for instance 1s the appropriate tool 10 solve the initial vaiue
problem associated with these PDE's.

In order to generate particular solutions there exist oth-
2r methods: e.g.. the BT: the Hirota approach’; the Dressing
method’; and the Riemann-Hilbert direct approach.” intro-
duced by Zakharov and Shabat{ZS); ¢tc. The Dressing meth-
0d has been formulated via an integral equation of the
Gel'fand-Levitan-Marchenko |GLM) type. and the Rie-
mann~Hilbert {RH) direct approach is based an 1 local ho-
mogeneous RH problem. used to generate solutions of the
PDE. Later we will discuss in some detail the RH method,
used often as a reference pont of our analysis.

In this paper we will concentrate on a particular meth-
od of solution: the direct lineanization (DL, an approach
used to generate parucular solutions of the PDE’s that can
be solved through the IST. We will 1a) discuss earlier work
and wul @ive a natural generalization, which captures a sig-
nificantly larger class of solutions; ;b stress the connacuons
between this method and some of the main features of the
IST: and (¢c) compare this lineanization with the RH direct
approach introduced by ZS, showing their connections and
differences.

. THE DIRECT LINEARIZATION

The DL was introduced by Fokas and Ablowitz® in con-
nection with the Korteweg-de Vries [ KdV) equation

* Permanent address: Dipartimento di Fisica, Universita i Roma. 00133
Roma. [taly
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1)

1t is based essentially on the existence of an integral equation

bixik) =i f L1

L [+k
involving an arbitrary contour L and measure 4/ (/) which
linearizes Eq. {1). In fact, under the assumption that the ho-
mogeneous version of {2} has only the trivial solution, the
solution & of {2) provides a solution uix, | of the KdV equa-
tion through the formula

u, +u, +6uu, =0, u=uxcl

g l) =1, (2!

uixt)= —d, J‘é (x,0.] g™~ dA ). (3}
2

The onginal motivation for this result is associated with
the, by now classical, IST {corresponding to u—0 sufficient-
ly rapidly as ;x{— =) of the KdV equation. Specifically the
integral equation (2), with contour and measure fixed and
given in terms of the scattering data, is the integra formula-
tion of the matrix RH problem,*

() e (326 = 4
dix,nk) Bix g, ~ K

In (4) & is the same as in 12}, & 1s another eigenfunction with
appropriate analytic properties, and the matrix G is given in
terms of the scattering data.

Another motivation is based on the Rosales perturba-
tion approach®; in fact the solution 13) can be interprered as
the sum of the perturbation series solution of the K4V equa-
tion around the soluticn 4 = 0.

The arbitrariness of contour and measure in :2} ailows
one (o capture 3 wider class of solutions than the one given
by the GLM equation: as an example in Ref. § it was shown
for instance that using (2) it is possible to find a three param-
eter famuly of soluttons of the seif-similar reduction of i 1):

U - buu ~ 2y -xul =0, u=uix. Si

The GLM 2quation is able 1o provide just one parameter
family of solutions of - $i.

Another suggestive argument is associated with the lin-
ear limut of {5} in this case, Eq. 3} becomes

Wx = -3, j e T A k. 6
L
Equation (61 1s the general solunon *Ehrenpreis principle™
of the lineanized KdV equation

il

U, ~ug,, =0 !

The linear hmit of (31 provides the most general solution o

© 384 Amencan Insttute of Physics 2814
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Eq. 7\, whereas it is known that the linear limit of the GLM
provides just those solutions of (7) obtainaoie using the Four-
ter transtorm.

These considerations are very far from implying that
this DL provides the most general solution of i 1}; on the
contrary recent studies on the equacion of Painleve [IPII),

(8)

v —xv =20 =aqa,

which is intumately connected to Eq. |5) 1see Ref. 7), have
shown? thar it 1s not the case, since the solutions of 31 ob-
tained through i2) correspond just to the limited interval
‘0,11 of the parameter o 1n 8\

In other words, the perturbation solution 13) (in the Ro-
sales language) of the KdV equation around u = 0 corre-
sponds only to the solution of Pll in the interval O <a < 1. It
is natural to consider an extension of the DL formulated
above which would correspond to the perturbation solution
of the KdV equanon around any arbitrary solution u, of the
KdV itself.

Ilt. A GENERALIZATION OF THE DL

The essence of this more general linearization is given
by the following proposition.
Proposition 1 Let ¥ix,t;k ) be a solution of

Ux, k) — | wlxnDhixnkdA ) = &) x,nk, 19

<L
where [ and dA /) are arbitrary contour and measure;
whx, ok | and @Y x.54 1 are two arbitrary solutions of the
coupled systems
{10a)
i 10bj

4 = UniX.7 ) 1S ANy Rven soiution of the KAV 2quation 1 1);
and 71 'x.pik. 0 1s defined in terms of ¥ by

Wn ~ Uy =k /4, =0,

!,//,)' = .‘10. 'J:’O — /( T - :u,,,w.,r;

Rk =207 = k™) [u}‘,,:’f_t.t;.’ \.ur})"‘!x,::k |
— e x sk -

Assuming that the homogeneous version of (9) has oniy the
zero solution, then

it

UixXs) = Ugx,t) -3, (uhx.:;k W sk dA kT (1D
JL

solves the KdV equanon.

The proof is direct and it 1s obtained operating on Eq. i9)
with the operators P and M defined by
P=d, ~u~x*/2 M= -0 ~u ~ k> =2ud, . 113
The result of this operation Zives

Phixx - ‘ Poix.nihixix) di 1Y =0, (14a)
«L

Mtz sk ~ ] Mzl hoxoskd daol)
<L

= | Pox.sl b sk YRlnidA D, | 14by
«L

and now 1if we assume that the homogeneous version of Eq.
19Y has oniy :he zero solution, Eq. 114a) impiies that P¢ = 0

and then Eq. (14b1 implies that My = 0. The compaubility

2815 J. Math. Phys,, Vol. 25, No. 9, Septemper 1984
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between these two equations finaily implies that » solves the
KdV equation . .

The lineanzation given here obvicusiy contains the spe-
cial cases in which u, = Jand u, = — 2/x°, which are ex-
plicit solutions of Eq. : 1; 1n these cases the DL was previous-
ly given .*?

In the Appendix we z1ve a constructive procedure thar,
starting with the general assumpuon (9!, enables one to char-
acterize the kernel 2:1n terms of ¥, asinil1) and, at the same
time, to fix the integral representation of ¥ — u, in terms of ¥
and ¥, as in {12 Such a systematic procedure, whose main
steps are essentially the same for all the PDE’s solvable via
the IST. will be the basis of the results of this paper.

We remark that we could have given the DL of the KgV
equation for the function 4 ix.c:k j= vix, ik /4y x Lk ), -
stead of ¥Ax,z:k 1. In this case the corresponding integral
equation

dix, k) w-J Sixnlgx.nkldA =1, i15a)
L

axnk D= xn ek e xnk) 115b)

has [ as forcing term and apparently would be the more
appropnate formulation for investigating analyticity prop-
erties in X, in view of the solution of the IST. As farasthe DL
1s concerned, the two formuiations are completely eguiva-
lent and here and in the following we will use either one or
the other, according to the convenience and to the elegance
of the associated formulas.

The explicit formula i 11} for the kernel & of Eq. (9)
shows the singular character of the integral equation and
strongly suggests that, asin the case u, = 0, some type of RH
probiem is going to be the natural structure underlying the
IST of the KdV equation for solutions u, as a finite perturba-
tion of a given solution u,,.

As we wrote above, the essence of this method is refated
to the existence of a linear integrai equation like 19) {or | 5a)]
which provides solutions of the KdV equation. On the other
hand. we know that the KdV equation is one of the many
PDE’s that can be solved through the IST. Hence it is natu-
ral to ask ourseives if and how the DL, in the generalized
form introduced here, applies to other equations.

For this purpose, let us consider the n X n matrix equa-
tion

Yo=Y - Q¥ V¥=V¥ixnk, (16}

where the scalar constant z plays the roie of spectra param-
eter, Jis a constant diagonal matrix, and Q@ = Q!x,/ )is an off-
diagonal matrix. Equation i16) is the natural n X n general-
1zation of the generaiized ZS problem isee Refs. 10 and 11}
and its IST has been recently rigorously studied by Beals and
Coifman. "

[n order to give the DL associated with {1611t is conven-
ient to introudce the matrix function @ (x,/:x | defined by

Dix, k)= Wixnk W T lixnk, ]
where ¥ and ¥',' solve Eq. (16} corresponding to the two
potentials Q and Q,,.

The lineanzation of the class of evolution equations as-
sociated with the spectral problem (16i is then given by the
following.
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Proposition 2: Let P 1x,r:21 be a solution of
Qxi~ | Pxni Gxrsddiil =1, 131
vl
when L and dA +/  are arbitrary contour and measure, / is the
idenuty matnx. G s defined by

Gixizli=iz =7l
Gl 15 ey, 19
where G,/ 1 1s an arbitrary constant matrix functon, and the
= are two arbitrary solutions of Eq. (16i for Qyix.71. As-

sumung that the homogeneous version of | 18} has only the
tnvial solution, then ¥ :x.r ) defined by

Yix st = Qix ¥ Yz i20)
solves Eq. (160 tf
Qix.t) = Qux.t} + {JJ D x5l 1Y)
L

1
X Gl \W'¥ = iz, \dA mJ. 21)

In this proposition and in the following ones we often intro-
duce arbitrary functions assuming that they satisty suitable
regularity properties in order to give sense (o the integral
formulas in which they appear.

Again the proofis direct and is obtained by applying the
operator {2,

REx o= = F, =~ 2[JF] ~QF - FQ,, 122
on Eq.118) 1o get
NP (xzi~ ) NP Gixtz)did) =0 123

vl
the result follows from the uniqueness assumption. In the
Appendix we Zive a sketch of how to constructively obtain
the lineanzation contained in Proposition 2, since the proce-
dure does not differ in spint {rom the one used for obtaining
Proposition |.

Problem 1 16) allows us to easily discuss the connections
between the DL and the RH direct approach, indeed it will
turn out that, if used on Eq. 16}, then the two approaches are
equivalent.

The RH direct approach introduced by ZS is based on
the solution of the following matrix homogeneous RH prob-
lem:

D Tixgzi =@ Tixpal - Rix, 124)
where z lies on an arbitrary contour L in the compiex-z
plane, @ “'z1and @ ~'ziarethe boundary vajueson L of func-
tions analytic inside and outside, respectively, of L, @ ~'zi—[
as si— =, and R is defined by

R ixoz=¥ x12GonW 7 ixooy, 125

where G,z is an arbitrary constant matrix and '#, solves Eg.
1161 with the potenuial Q,. Then it is easv to venify [using (24},
i25), and 16} that #= x.;ovand Q 'x,: ', defined by

P Tixen =@ T xanV ke, 1261
Jd-Quxn=(®F —® 2~ Qx| 1@ 2T
27
solve Eq. [ 16].

The equivalence betwesn the DL given in Proposition 2
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and the RH direct method is immediate and obtains by com-

panng 1 18) and 119 with the t — ' projection of (24
@ xim— ——| P xn Ry 28]

EYre SF 4 § -2
where z—L from outside the contour.

The equivalence of the two approaches shows that the
homogeneous RH problem 241 on which the ZS method :»
based. is the natural analytic structure underlying the lirear-
1zation of the PDE’s associated with the spectral pr  ..n
i161. The particular z-dependence of the kernei G of Eq. . 13,
given in |19}, indicates that the integral =quation 118} comes
from the | — j projection of a2 homogeneous RH probiem of
the typet24). Vice versa, if the z-dependence of G appeared :n
a different way, we would infer that 124} is not an adequate
analytic structure for describing the problem. We will show
in the following that this phenomenon is not exceptional.
being a common feature of the PDE’s related to the IST in
2 - | dimensions.

While the RH approach idue to its restrictive basisi can-
not in general be applied, the DL, based on a linear integral
equation of the type {18), where the :-dependence of the ker-
nel G is determined a posterior:, Zase by case [through direc:
algebraic calculations and is in general diferent from the one
givenin(19)], turns out to be a viabie approach for character-
izing a wide class of solutions of the PDE under invesuga-
tion.

IV. THE DL IN 2 - 1 DIMENSIONS

The DL in 2 + | dimensions is again based on a iinear
integral equation

B (x 1k | -J @ (xp. 081
L
K Gueynklvdéilvy =1 29

Now the integration 1s1n two vanables ! and v, a reflecuon of
the higher dimensionaiity of the configurational space, L
and d¢ i/,v) are arbitrary contour and measure, 3 = 5{,v' s
an arbitrary function of / and v, and the kemne! G wiil be
charactenzed in terms of certain linear PDE's whose coeffi-
clents are given in terms of the unperturbed sotution
U X P b

As an example, let us apply the DL to the Kadomtsev-
Petviashvili i KP) equation ™

(U, + 6uu, ~u,j, = —3ou,, o=C RS

that can be obtained as a compaubility condition of the syvs-

tem

Po=ov, ~ ¥, ~u¥ =2, Jias
/ \

Mu=4d, - 3w, ~bud, -3 u, _.,—( 4, x'dx tw =0,
\\ .

v - »

31bi

In our analysis ¢ can be thought of as an arbiutrary compiex
parameter, including then thetwocaseso =:and —~ | KPI
and KPID in which Eq. 1301 descnibes the propagation of
quasi-one-dimensional waves in a nonlinear weakly disper-
sive medium and the sign of o* coincides with the sign of the
dispersion.
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We have the following proposition.
Proposition J: Let ix,p.r;k ) be a solution of

Uxp k) + f fw(x.y.tﬁ (1)
L

XA (xp ikl vid (v = dolxy.nik ), {32}

where ¥, solves the coupled system {31} corresponding to a
given solution ugix.p.s ) of Eq. (30} and 4 is given by the for-
mula

hix.p.6k,lyv)

= -;_f [yl vidolx' p.t:k \dx!

+ o5kl v,a), (33)
where w is a solution of the coupled system
oa, = Q[fx(alwo(a) —f(a)%,(al], (34al
@, = = 2{falalola) - fi (@l (@) + flalb (a)]
— 3uoflaldila), (34b)
with
flay=flepslv), dha) = dolap.hk),
and f solves
ofy = fex — 4 =0, (35)

So+ Y e + Ouf, + 3(uo_ + af u.,’dx’)f= 0. (36

Assuming that the homogeneous version of (32) has only the
trnivial solution, then u(x,y,z), defined through

ulx,p,t) = uglx.y,t) + a,f J‘w(x.y,r;ﬂll,v))
L
X flxy.udvidd il v), (37)

is a solution of the KP equation.

Again the proof is direct and it is based on the applica-
tion of the operators P and .M on Eq. {32). In the Appendix
we show how the constructive procedure used to get Propo-
sitions | and 2 generalizes naturally to this (2 + 1)-dimen-
sional example, hence enriching itseif of new features and
properties.

The solutions of the [ST for KPI and KPII (see Refs. 14
and 15) can be easily recovered by choosinguy, =0and 8 =/
forc=iandu,=08=(~ivforo= — 1.

The formulas (33) and (34) or, equivalently, the system
of linear PDE’s |A 10) satisfied by 4, have a rather complicat-
ed k-dependence. However, when u, = O, the situation sim-
plifies enormously; in order to see that, let us introduce the
functions g and v defined as

glxpnklvy=hixp,tklv)
X olx p 5B (L) dolxp k), (38a)
vix .l v) = dolxp,t 8 (LY (xp, 0l v). {38b)

Rewriting the system {A 10) (including also the ¢-equation)
for the function g, and considering the case u, = 0 (and
Unlx.p.1k ) = exp{ikx + (k */ay + 4ik >t }), one obtains the
overdetermined system

8: +ik—Blg =1, (39a)
o8, +(k*=BYg=\[v, —ilk ~Bw], (39b)
2817 J. Math. Phys., Vol. 25, No. 9. September 1984
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g, + 4k =frg=2(1k?+B* kB
=ik + 28w, —v. ] (39¢)

The compatibility condition for the system (39) fixes the &
dependence of g in the form
gixynkdv) = = wixpnlv)/[2k = cilvi)], (40}

where ¢ = c{/,v) is an arbitrary function of / and v and, corre-
spondingly, v solves the equations

v, =ilf ~c, (41a)
ov, =B* =, (41b)
v, =483 = . (41c)

The k-dependence of g (and then of 4 ) implies that the
integral equation (32) can be derived from a RH problem of
the type introduced by Manakov'® in a work in which he has
generalized and adapted the RH direct approach of Ref. 4 to
2 4+ 1 dimensions. He postulates a nonlocal RH problem,

@ T(xy5k) =0 Tixypnk)
+ J-,é “{xp51G (xp,5k,1 {42)

in order to detect and generate PDE’s solvable via the IST.
The existence of explicit cases, associated with uy = 0 (and
briefly discussed above), in which a RH structure is recov-
ered, is a confirmation of the validity of Manakov’s ap-
proach (for uq = 0) in finding a connection between the KP
equation and the nonlocal RH problem (42). Such a connec-
tion was also proven via the solution of the IST (see Refs. 14,
15, and 17). In Ref. 15 in particular, for the first time it was
shown that the KPII equation is related to a “3 ™" problem,
whose integral representation also gives rise to the k-depen-
dence presented in (40). But the nongenericity of the above-
mentioned examples corresponding to the case 4, = 0 indi-
cates at the same time that the RH problem (42} is not
adequate to capture a wide class of solutions of the KP equa-
tion.

We will show in the following that essentially the same
situation arises when one writes the DL of a class of PDE’s
associated with the 2 + | dimensional generalization of the
spectral problem (16). Such a generalization is'®

v, =J¥, + QV¥, (43)

where ¥ = ¥ (xp.1;k ), Q = Q(x.y,¢)andJaren X n matrices,
and J is constant and diagonal while Q is off diagonal. Physi-
cally relevant equations such as the so-called Davey-
Stewartson equation, the n-wave interaction in 2 + | dimen-
sions, and the modified KP equation are rejated to (43). The
IST associated with this linear problem has been recently -
investigated and solved in Refs. 19-21.

The DL corresponding to (43) is formulated in the fol-
lowing way.

Proposition 4: Let & (x.y,k ) be a solution of

B (xpk) + f f D (x.p.8(1,v)
L
X Glxykdvidg vy =1, (44)

where L and d¢ {/,v) are arbitrary contour and measure,
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B = B!l,v)is an arbitrary function of / and v, G is given by the
expression

Glxyklv)

=%(x,r,eu.vn( f 05 X B lyi)

X R (x' pil yWWoix' p,k Jdx'

~:-gty,k,1.v,a))¢/°‘ ik ), (45)
where

g,Wkiva) =¥ HayB ViR (aylvi¥layk),

(46)
R = R (xy;],v) solves
—R, +RJ+ [JSxyBUMR] +
with

(QolxhR ] =0, (47)

SixB)= ¥, [xyB)¥ s (xyB), (48)

and ¥, is a solution of {43) corresponding to the potential
Qolxy). Then

Yixyik) = Plxypk)¥lx.yk) (49)
solves Eq. (43) if Q (x, y) is given by

Qx, y) = Qulx, y) + [J. J; J‘ P (x, pBUY)

X R (x, y:lv\d§ (I,vl] . (50

Again we refer to the Appendix for the derivation of
this proposition. Formulas (45) and (46) imply that the kernel
G satisfies the following set of (compatiblej linear PDE"s:

G, +GSlk}—-SBIG=R, [51a)

G, +GSSik)+Qy) =SBy~ Q,)G=RJ. (51b)
When @, = 0{and ¥, = exp(ik | Jx + yj}}, the compatibility
condition for the system (51) fixes the k-dependence of G in
the form

G (x. ik dv) = = R (xyhivi/ [k = ctlvi]y (52)
and, correspondly, R is defined through the equations

R, =iBJR —cRJ), (53a)
R, =i —cIR {53b)

postulated by Manakov in its nonlocal RH approach. This
shows again how the nonlocal RH problem (42) is an appro-~
priate tool to detect the PDE's in 2 +~ | dimensions corre-
sponding to the linear problem 143), but, unlike the case of its
associated | < | analog, it is able to capture a restricted class
of solutions only (e.g., the ones obtained perturbing off of the
zero solution).

Concluding this paper, we would like to remark that the
DL has been studied here in connection with a certain selec-
tion of relevant eigenvalue problems associated with the IST
theory, showing that the general assumptions on which the
DL is based are consistent with the general features of the
IST theory.
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APPENDIX

In this Appendix we wiil illustrate the constructive pro-
cedure used in this paper tn order 1o obtain the DL contained
in Propositions |—4. Since the main steps of this procedure
are essentially the same for all of the PDE’s related to the
IST, we will discuss them in some detail for the KdV exam-
ple, limiting our discussion of the other cases to those situa-
tions in which the procedure introduced needs to be modi-
fied or exliibits new features.

(1) The first step consists in writing the integral equa-
tion for ¥,

wx:k) + J‘t//(x;l Ve (x;k,d \dA ) = ' (x;k), 1Ala)
L
or for ¢ = Yyl ~ 4,
k) + [ e gtesk /1A 1) = 1. Alb)
L

The kernel 4 has to be characterized a posteriort as is indicat-
ed in the following steps.

(2) In the second step one applies the spectral operator P
to(Al}[orf2 to{A2})]. IntheKdVcaseP =4d,, ~uix)+~k?/
4 and Eq. (A la) implies
buabi) + | [Wunlsil Vo cid) + 20, 5 o, k)

L

+ Uiy, (xik )| dA ) = ¢y (x3k), (A2a)

u(x)ix;k ) + JH(XMX;I A (1)
L
= uglx)Wolx:k ) + [u(x) — ug{x)]¥olx:k ), (A2b)

k? ]?
X k) + f(—w(x;l i ek, )
3 \ 4

k=12 k
4

_ i), (A2e)

-+

Hxil h (x:k ] ))d,l () =

Adding these three equations up, one obtains
Pk ) + [ (Pl e 1A
L
+ J‘ [Zzﬁ, (il Yh, (xik,d) + Hxd )
L

2 2
X (hulx:k,l) + E—T—-I-h (x:k.] )>]dzl i)

= (Pothlxsk ) + (u — ug)thx;k ). {A3)

Then the requirement Py = Q (P, is already zero by hy-
pothesis) isolates an equation for u — u, which, in the KdV
case, reads

(4~ ugdhk ) = 2 J G0 Sl \dA

<o -

here and below we omit for convenience the x dependence.

{3) The analysis of Eq. {A4) suggests the structure of the
integral representation of u — u,, in our case Eq. | A4} im-
plies that u — u, must have the form

)d/t A4}
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u—uo=f[w,(1yl(1)-',-w(l\fz(l)]d/{. {A3)
L

where the functions f, and /; are characterized in the next
step.

(4! Evaluate the consequences of the assumed structure
(A3). For instance in this specific case, Eqs. :A4) and (AJ)
imply

2h, = fill W4k ), (A6al

A + (k2 = 17)/3]h = fiil 1k, {A6D)
and one can verify that the compatibility condition for this
system implies that f; = f, = ¢, where 44" is an arbitrary
solution ot the Schrddinger equation 10}, and also that 4 is
given by formula {11).

When applied to other examples, the procedure above
repeats exactly for the first two steps, while steps 3 and 4
adjust to the specific problem under investigation. If, for
instance, we deal with Eq. (16}, after steps | and 2 we have

Q—Qo=f{(z—1)J¢G+¢[ -G, +{lJ+ QG
L

=Gz + Qo)]1dA (),

and now taking into account that @ — Q, is a k-independent
off-diagonal matrix, on analogy of (AS) we necessarily find
the structure

0-0,=[sfsurin]ar
whereagain R has to becharacterized. Substituting (A8) into
{A7) we then obiain

z=0Gizl)=R[l),

G, +GlzJ+Qy) = 1lJ+-QniG=RUV.
System (A9) has the solution

Gikly= Rz ~1), R\ =G W (L)
The application of our procedure to equations in 2 - | di-

mensions leaves essentially unchanged the first three steps,
and leads to the integral representations (AS5) for KP and

fAT)

(A8)

(A9a)
(A9b)
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{A8) for the spectral problem {43). Equation (A5} implies for
KP the following system:

2h, = fil Wolk ), {A10a)
oh, + hy = fuil Wolk ), (A 10bj

whose compatibility condition implies that f, | = f; = f.,
and formula (34). Equation {A8) for the linear problem {43)
implies the system {51), whose compatibility condition is giv-
en by Eq. (47).
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On the limit from the intermediate long wave equation

to the Benjamin-Ono equation
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The intermediate long wave equation is a physically important singular integrodifferential
equation containing a parameter, referred to here as 8. For § — = it reduces to the Benjamin~
Ono equation. It has been recently shown that the inverse scattering transform schemes of the
above equations have certain significant differences. Here it is shown that for § — =, the inverse
scattering transform scheme of the intermediate long wave equation reduces to that of the

Benjamin-Ono equation.
PACS numbers: 03.40.Kf

1. INTRODUCTION

The intermediate long wave (ILW) equation arises in
the context of long internal gravity waves in a stratified fuid
with finite depth. '™ Moreover, it arises in other circum-
stances as well (e.g., long waves in a stratified shear flow.”’
The ILW equation can be taken in the dimensionless form

u, - ‘l/a)u, - ZUU_‘ -+ Tux.: = 0;
= _1_ b ﬂ.(g -‘X) ) A
{Tulx)= 3 J: . coth ( = vié g, (1)

where Cauchy principal-value integrals are assumed if need-
ed. In the internal gravity waves problem, the parameter §
can be thought as the ratio of depth to wavelength; Eq. (1)
reduces to the Korteweg—deVries (KdV) equation® as § — 0
ishallow-water limit)

u, + 2uu, = (8/3u., =0, {2

and to the Benjamin-Ono (BO) equation® as § — » (deep-
water limit)

4, = 2uu, + Hu_ =0 (Hox)= — j o) g
T J/em§g—X
(3)

Equations (1}~{3) are special cases of an equation dis-
cussed by Whitham. '® V-soliton solutions, an infinite num-
ber of conserved quantities, Bicklund transformations, and
Lax pairs for the ILW and BO equations have been estab-
lished in Refs. 3, 4, 6, 11, and in 12~16, respectively.

The inverse scattering transform (IST) scheme, a meth-
od for solving suitable initiai-vaiue problems for certain non-
linear equations, was discovered in connection with the KdV
equation.'” The IST schemes for the ILW and BO equations
have been recently established in Refs. 11, 18, and 19, respec-
tively. The limit of the IST scheme of the ILW equation to
that of the KdV equation {§ — 0 is rather straightforward
and was given in Refs. 6 and [8. However, the limit of the
IST scheme of the ILW equation to that of the BO equation
{8 — a0 ) presents certain difficulties. This is a reflection of
the fact that the IST schemes of the ILW and BO equations

* Permanent address: [stituto di Fisica, Universita di Roma. 00183 Roma,
[taly.
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have significant differences. Actuaily the IST scheme of the
ILW equation is conceptually similar to that of the KdV
equation [see subsec. IIA below); on the other hand, the IST
scheme of the BO equation is similar to that of the Kadomt-
sev~Petviashvili equation (a two-dimensional analog of the
KdV equation).*® Hence the limit process § — = in a sense
provides a limit between two different types of IST forma-
lisms, appropriate for one and two dimensional problems,
respectively.

In this paper, it is established that as § — =, the IST
scheme of the ILW equation reduces to that of the BO equa-
tion.

. REVIEW OF THE IST FOR THE ILW AND BO
EQUATIONS

A. The ILW equation
The following results can be found in Ref. 18.

1. The direct scattering problem

The direct scattering probiem of the [LW equation is
based on the x-part (4a) of the “Lax pair”

LiW=iW + (§ A+ V2WWF T =F )= —ulW ",
(4a)
Wz -0 W+ WZ
+ ([ Fiu, —Tu, +ps|W==0 (4b)
where
. . Ae=t |
fLlAlE & ——— = =

e,«s —e™ is 2‘5

PslA)=AL .+ (A /28 +v, v
is an arbitrary constant, A is a constant and is interpreted as a
spectral parameter. Given u, Eq. (4a) defines a Riemann-~
Hilbert problem in a strip of the complex x plane; W = (x)
represent the boundary values of functions [i.e., ¥ =
(x} = lim,_, ¥4x + iy}] analytic in the horizontal strips
between Im z = 0 and Im z = 4 25, and periodically ex-
tended vertically. Importantly, Eq. (4a) can also be soived
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without appealing to Riemann-Hilbert theory since it can be
viewed as a differential-difference equation. This follows
from the periodicity condition ¥~ (x) = ¥~ ix - 28).

Let us concentrate on the ( + | functions and let M,
denote the| + | “left” eigenfunctions, while V..V denote the
t — ) “right” eigenfunctions. These eigenfunctions, in addi-
tion o solving (4), also satisfy the following boundary condi-
tions
Mal, M™% a5x— — 5, VN—l,

New g =4 a5x— ~ xm. (5)

The eigenfunctions M, ¥, .V, ¥ sausfy the following Fred-
holm integral equations

M(x.r{))_( { )
Mx,A))  \etx-1is
(" . s M(y-i))
+ f_ ‘G,(x.y. s lA ;)uly)(‘rﬁ bA dy, |6a)

Nix, A )) _ (e"‘““"’)
Vix, ) 1

" Niy 4

-:—J G_{x, p, s ANyl = Yy, )dy. (6b)

where

G.(xp5id))

1 gPx =
= — f dp —, {7
r 2= [§A)=1/28])(1 —e™ ")
where C _ are the contours Re (p == /0.
The ¢ eigenfunctions M, V, .V are related through the
scattering equation

Mix,A1=ad Nix, A+ 8 A)+ 1/ (A WV ix,4),

(8)
where
aid)=1+ % j dyuip\M{y A);
l »
blA)= — J‘ dy uly\M e ~Hr—48 (g)
) % M'é y uly\M { y.A i

and
GiA)=1 for A>0. 8141 =0 for A<O.
The “bound states’” correspond to those A, for which
a,=aild,) =0, [=12,...n, {10a)
M (x)=MixA,) = blA NV (xA,) =5,V x). (10b}

2. The inverse scattenng problem

The solution of the inverse problem is based on Eq. (8).
Given aid ), (4 ), and appropniate information about the
bound states, find M, ¥, .V. In order to view (8) as a Rie-
mann-~Hilbert problem in the complex & _(A | plane, one
needs to establish analyticity properties in ¢ (4 } for the ei-
genfunctions M, ¥, V. The Kernels of the integral equations
satisfied by M, Vare ( + )and ( — ) functions, respectively, in
$ .4}, i.e., they are analytically extendable in the appropri-
ate regions of the { _(4 ) plane. Since the forcing in both cases
is unity, Fredholm theory implies that the solutions M and .V
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arealsol — 'andi — 'funcuonsiny _iA ', provided that there
exist no soluuons to Egs. 161 1when d is finite, it can be shown
that for suitable potenuals this is actually the caser. Further-
more, Eq. 19a) impiies thataig_1isa+ - 1 function in A.

In order to solve (8}, one needs to establish an analytic
connection or symmetry condition between .V and .V. This
follows from the relationship

Vix,Al=Vux, =A™ {11
which is a consequence of
G.x.pA)=G_ix,p, —Aje**~" (12)

_ Equation {8), using the above analytic properties of W,
.V, and g, as well as Eq. {11}, defines a Riemann-Hilbert
problemin¢ _(A ). From this, the following integral equation
is obtained {see Appendix A}:

= PN
Ve - L PN )

il G, — (5. — 0 -
- CN,

SiY (13i
/:.‘3 3-/

where
. bid A
oy LS S (14)

a; (§.A) liak ald )

The Gel'fand-Levitan~Marcenko equation given in Ref. 18
can be easily obtained by taking an appropriate Fourier
transform of (13), supplied by the analytic information (11).

We shall also need the foilowing relationship, which is
obtained from (13) asymptotically as § _—x (ses Appendix
A):

1 -
uv(x) = — o NVIE 1dE,. —-iSY C.Y,;
{ ZW.J‘ Hps Wigds. iy C

J=1

My —x—i0)
x.osh (——T )ui ydy. (15
And finally, the reahty of ufx) implies that uix) = u " {x)

-~ u"(x) = uTix) + {uT(x))*. .

Equan'on (13)defines.Vintermsofp, C;, A, and Eq. [15)
defines 4™ in terms of p, C,, Yy, Hence Eqs 13 and (15)
define 4 *(x) in terms of p, C,, /{,, the so-called scattering
data. However, the scattcnng data need only be evaluated at
time ¢ = Q (i.e., in terms of the initial data u(x, O only] since
their evolution is known.

u {xa—- —

el

{4,(e) = 4,(0),
C)lt) = C,(Ovexp (id, [ A, cothid, ) — 1/8]e)17. .,
plA, t) = plA,0lexp [iA (A coth A8 — 1/8)t . {16)

The above evolution of the scattering data follows eastly
from the r-part (4by of the Lax pair.

B. The BO equation
The following results can be found in Ref. 19.

1. The direct scattenng problerm

The direct scattering problem of the BO equation is
based on the x part {17a) of the "'Lax pair'"
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Lu=iw> +Ajw™ —w )= —uw™, (17al

W= - dAwF -wi = U(u}Ffws = —pw=, (17b)
where

[u] == = u/2 +11/2\Hu. (17¢)

Given u, Eq. (172) defines a differential Riemann-Hilberr
problem in the complex x-plane; w = (x) represent the bound-
ary values of functions analytic in the upper { + ) and lower
| =) half x-plane, i.e., w=(x) = lim, , wix = iy).

The eigenfunctions m, m, n, A satisfy the boundary con-
dittons

m—1, Mm—e* asx— — x;

Ai—1, n—e* asx— + x, (18)
and are characterized through the following Fredhoim inte-
gral equations:

(nﬂx.i)) (l)
mix, A} e
- , m{y,l})
+ X, Al )(- dy,
qu » AN Gy, A

mx.fl))_(e‘*‘) J" . (nty,zl))
(ﬁix./{l =\ )7 8- A L )P

(19a)

(19b)
whereg _,g_ arethe{ + )and ( — ) parts of sectionally holo-
morphic function

six. y A) (20)
and A denotes the complex extensmn of A, i.e,
:(x - 5
X, pA)= — 21
g%y A) j AL (21

The eigenfuncuons m, i, n are related through the scat-
tering equation

mix,A)=dlx,A)+ 8{A B (A )n(x, A1), (22)
where
Bli= ij u( yim( y.A \e ~4dy. 23

2 The inverse scattering problem

The solitons of the IL W equation correspond to “bound
states’” which are generated from the zeros of a(d ). However,
in Eq. 122) (which is the analog of {8}), the coefficient of 7 is 1.
Hence the solitons of the BO equation are generated through
a different mechanism; the integrai equations (19), in con-
trast to the integral equations |6), may have homogeneous
solutions @, for some 4, where 4, <0, i.e.,

¢‘,(x7==J gxyA lup® (ydy, A, <0 (24)

The kernels of the integral equations for m, 7 are( —) and
( — ) functions rupcctively in A. Hence

P (x)

LJ
mix. A) Y +m_{x, 4), (25)
T A- ;
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. C®.Ix)

Alx,A)= 1+ ~A_ix,A), 126)
! Z A=A
wherem _, 7 _are( — jand | — | functions, respectively, inA.
It tums out that
C =E; = -1 j=12...m

In order to view Eq. {22) as a Riemann-Hilbert problem
in the complex A plane, one needs to establish analytic infor-
mation about 7 and 7. This follows from

3"; (. A Je =4 = fld, t e ifx.d )
FiA)= ~ —l—f uiyiniy.A idy. @
204 J - .
Equation (27) is a consequence of
Seg.lend)= - —2—_% +ilx —yig . 5o A).

{28)
Using (28), one also finds that
lim [7A{x, ) — i® (x1/{A = 4))]

A—ed,

= (x -+ 7/>¢/' (29)

Equation (22), using (25F427), and (29), defines a nonlo-
cal Riemann—Hilbert problem in the complex A plane which
is equivalent to the integral equation

nx, Af) = — f hix, 6 A, DBUL £, ¢, 1dl
21)' 0

+ 3 Pix, thhix 6, 4, A4) = vix, t, 1), {30)
HER

1 ("Bl tinlx, 8, 1) ,
+ 7 NP X 1) = — | ——— gl
(x+7t)@ix, 1) g ) d
S hillad
1-!11_’{1

[ =y

=1, (3H

where

A
{
e XA = () xd . = e——
v(«t.t.i)—.-L {fll, t)e + fiihedl fIA) T3

{32aj

hix, t, A, 1):e‘“‘“‘j v, Ade ="M %dE, 150, (32b)

izt A et~ [ g, e g

a

e _«',)u—an'r(f(/. tleeti - . L )dl.
o

A, =1 A
{32}
The following equation is also valid:
1
U)* = — [Ajnx A dA ~iY @ x), 33
(u] - J Bliin 12 1x 133)

and assuming u real, u(x) = u " {x) + (1 " (x})*.

Equations (304<33) define {u] ™ interms of 4, v,, B4 ),
f14 ). However, the scattering data need only be evaluated at
time ¢ = 0, since their evolution is Known from (17bi:
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{4,121 =40,
BlA, t)=8IA0", FflA, t)=/flA,0e4"

.//([, = u/[ - Y/(O”/"- [
i34)

1. THE LIMIT FROM THE iLW EQUATION TO THE BO
EQUATION

In this section, we will show how the IST scheme of the
BO equation can be obtained from the IST scheme of the
ILW equation.

A. The direct scattering probiem

Asnoticed in Ref. 18, thelimit§ — =,4 >0, of the Lax
pair (4} goes directly to the system (19); the strips between
Imz=20and Imz = 4+ 25 become the upper and lower halif
z-plane, and then w ={x) = lim, __ W ={(x) are nothing but
the boundary values of functions analytic in the upper ( + |
and lower ( — ) half z-plane.

It is straightforward to show [see (B2)] that lim, , G .
(x5 A4) =g, (x.y.A},A >0, where the Green functions
G, andg . aredefined in{7) and (21), respectively, then the
Jost functions of (17a) are soiutions of the Fredholm equa-
tions (19) and can be obtained, for 4 > 0, in the following
way:

mix,A)=lUmMx, A) (35a)
S—on

mix,A) = &li_m}?(x, A4S {35b)

nix, A) = lim ¥ (x, A e =%, (35¢)
S

Aix, A) = limVix, A} (35d)
S—os

The analytic information about G _ {and, consequent-
ly, about .V ) contained in {11) and (12) are apparently lost in
the limit§ — =, from which we find theidentityg . =g _ .
Nevertheless, one may show that taking the derivative of {12)
with respect t0 4,

G. xpA)=ix—yGx,p.4) + G (x,p, ~Ajet"~",
(36)

and then taking the limit § — = of this equation, one gets
[see, (B3)~{B5)] the nontrivial equation (28). Analogously, by
taking the A derivative of Eq. (6b)for.V (x, — A ), enriched by
the property (11},

(¥ix, A e,

- a0

=J Gylx =y, — A iyl (p,A e~ = gy

«-J‘ Glx — pA et "~ "upiN (v, A le ~ 47 =y,
0T (37)

and ¢Aen taking the limit § — x, one gets the analytic con-
nection formula (27). This highly nontrivial formula is de-
rived at this stage as a consequence of the noncommutativity
of the two operators lim,__ and 3 /JA. It will be rederived
later (perhaps in a more satisfactory way) from the scattering
probiem.
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Using Egs. (35) for A > O, together with the symmetry
condition (11} for the case A <O, one can take the limit of the
scattering equation (8}, Specifically,
I, A>0,
diA), A<0,

(38a)
(38b)

limagd) =
S—m

lim blA)=e~*BI(1), A>0, (39a)
Somm

lim 8e*b (1) = —— f uplly, ~A\dy, A<O,
S cn 2/{ - -
(39b)

whered (A )=1 + iJ‘ ulyymiy, —A)e*’dy,and (A )is de-
fined in (23). Then in the limit 5— o0, Eq. (8) goes to Eq. (22)
for A >0, and it goes to

mix, —A)=d{d)nlx, —4)

for A <0.
Finally, 138} and (39), together with (14} and (40), imply

(40)

that

lim ptd)=e " **B(1), A>0, (41a)
Soemy

;i_m 8%l ) =imf(—4), A<O, (41b)

with f{4 ) defined in {27).

The solution of the inverse problem for the BO equation
will be obtained taking the limit 5— » of Eq. (13). However,
in order to do that, we must still characterize the asympto-
tics of the bound states A, = 4,(8),/ = 1,2,...,n of the [LW
equation.

8. The bound states

Asshown in Ref. 18 for every finite § thei, ‘s aresimple
zeros of a{4 ) and lie on that portion of the imaginary axes
contained in the fundamental sheet of the A plane: 4, = ik,
O<k <m/8. i

In order to establish the asymptotics of 4, we will study
the equation g, =aid,, 8) = 0 for large 5 with the following
ansatz:

A, = lim/8)ay + al?/8 + a/8 = 0167, (42)

and the restriction 0<ay’< 1, which is a direct consequence
of the property 0 < k, < 7/8.

Substituting ansatz (42) into the equation a; = Q evalu-
ated for large &, one gets an equation in inverse powers of §.
In order to equate to zero the coefficients of the O (1) term,
the following conditions must be satistied (see Appendix C):

ay' =1, (43)

M (x) = dui(x) - ui'lx) + 016", (44}

|7 wowppay = -, (@sal
where

A= 124 (45b)

while, equating to zero the coefficient of the O (5~ ') term, one
gets
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J utyw'ydy = ~ Uv _, 146a)
where
v_ =ilz/N = U ey 146b)

Asaconsequence of result 143}, the property &, < 7/5 implies
that @' (and then 4, is negative, otherwise arbitrary.
Moreover

g. =g )= =4 +v_/8+0167%, 5>1.147)

Substituting the expansion (44) into Eq. (6a) evaluated
for large & and equating to zero the coefficients of the first
two terms, we get the integral equations satisfied by p5(x)
and z\Mx):

(Kuy"x) =0, (48al

KuMx)y =1+ f’ gux. y, A Jutyips’yidy, (48b)
where )

IKn)ixy=nix) — J.’ 31X y, A, Julymydy, {49a)

and
Qixp A=y o+ lglx A) =i/, {49b)

is the coefficient of the O (5~ 'Yterm in the expansion of G _(x.
y. A,) when 5% 1 [see (B6}]:

A) =072
(49¢}

Equation (48a) shows that the leading term of the ex-
pansion of M, is asolution of the homogeneous equation (24),
corrapondmg to the eigenvalue 4,. u\"x) is the solution of
the inhomogeneous equation |48b) and the necessary and
sufficient condition for such a solution (o exist in [see (D5)]

G_ix. y 4] =gix, y, 4] + {1/5)g (%, .

ay’ = 1/144 ), whereupon then v _ = (i = 1). So Eq.
i43bi becomes
Kuixi = S| 1x = yigtx, y A iy, (50)

-

[n both Egs. (48a) and (50}, the solutions u'(x) and
u4y'1x) are defined up to a multiplicative constant that can be
determined using Egs. (45a) and {46a).

Formulas {42}, (44), (45a), (47) allow us to evaluate the
limit of ¢, = ~ ilb;/a])= —1(b4,l Va, (/l ).

1 d L ~dp—is
b= = ——— upIM.yle =Y T 4d
26 YU, ) y
1 -
= - — u(y\eyd
7 J._’ yius'(vidy
+016~Y=1+0187YH, 651, (51

s0, as a consequence,
N =M /b, =8uifix) = O(l), S»1. (52)

For definition (9),
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I “»
a = - - uyIM . (y\dy
’ 286", J- ° ’
1 ~
- uiM (pdy. (53)
2S¢ . J LY v

Mipi=M_y, 5 A ).y sausfies the equation

M ix) - J G_ix. y, A uyiM [ (ydy
=J G . 1x, yiugiM, y\ay, (54)
with G°_ {x, y) = ey s AN -’ The asymptotics
of G'. |see Appendxx B)
,,(x'y)—g;(x,y, A+ 087", o>l (55)

and the condition (D5) of the existence of solutions of equa-
tion (54) for large 8, suggest the following ansatz:

U ix) = 8olx) + S x) + O, S> 1L {56)

Substituting (56) into (54), using (55) and (49¢) we get, for the
first two orders in &,

(Kay)x) = 0. (57a)

(K@ M(x) = f T g Ayl idy

+ f T gk A G Y. (7]

A(x) is the solution of the homogeneous equation (24} with
eigenvalue 4, then 2 = uul(x), u constant. Using this re-
lationship, together with (49b), (28}, and (D35), one getsu = i/
i then,

4 ‘5 -
a = 2—;— u(yw“’(y)dy +0f(1)
- - i‘i*om. 551, (58)
r
and finally,
¢, =mw/8+0(57%, &>l (59)

C. The inverse scattering probiem
We are now ready to take the limit § — = of Eq. {13)
which is the inverse scattering scheme for the ILW equation.
Let us analytically extend Eq. (13)tod = — 4

(e dede —-'—?-’—— )N,(x}_

[
J‘ P‘§ Wix, g ) plo L s W) e
21’1 s+ 8 5 -, +i0
i cN
i S ——— =1 (60)

Ll
-1 ;_14.-5-,
{wmy

Its limit when 85— x, evaluated using (42), (47}, (59), {41), and
(35), is
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, l
— 7{x = y.(0) | ug'lx) — =

-t

P RAMAY . n Uy lx)
xl B—(,A—ﬂ_-’t—-d,t—irr? = i61)
Jo A —'A./ It A —'/l/
-y
where
viths — E/(u/m- /274, — i/;’i‘,, 62)

and ,(t) charactenizes the second term of the expansion of
C, for Large ¢:

Ct)=im/81 + C,it)/5 + O16~%), S»1. (63)
Asymptotically in x, Eq. (61) reads — mxui/(x) = [, then

px) = — /7, (%), (64)
where @ (x} is the solution of (24} with the property

xP, (xj—1.

So in terms of @ (x), Eq. (61) becomes Eq. (31) and Eqg.
(45a} becomes

j u()@, (v)dy = 2mid,. (65)

Let us consider now AeR™; in this case Eq. (13 goes directly
to

- D x)
A, d) = o= [ A=l gy - 66)
2miJo | — (A —=i0) et A=A,
(see Appendix C), which implies that
£ n ¢
L[TBDmed) oy g Z2E e

2Tﬂ 0 1+l€ m- | A

ad

The last choice for A is AeR~; in this case,

nix, — A et — L [7 BlhntxD}
[+ i€

2mi Jo

Ifl = Daix, = 1)

_2‘- et&@ll&d{
m mm =l A e
=1+ iddal +0(67Y, &>l
m- | -~

A

Making use of (67), splitting jo dl into J dl + f dl and
- A

expanding the corresponding integrands, we get
nxA le = ~ ff(l Jilx, e~ ""dl =0, A>0 (68)
Q

tsee Appendix C, which is nothing but the integral form of
the analytic connection formula (27).

Formulas (66) and (68) are equivalent to the integral
equation (301 and together with Eq. {31} they determine. in
principle. the nix), 7{x), and @,'s, and thus contain all the
information one needs to soive the inverse scattering prob-
lem associated with the BO equation.

It is remarkable that these three equations are derived
from the same Eq. {13) when 8— . in the three different
situations A = ~ 4, A€R™, and AeR.

Finally, the limit of (15) goes directly to formulas {33),
showing how to reconstruct u ~(x), and then uix} = u ~(x)
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-~ {u7x))*, the solution of the BO equation, from the scat-
tering data.

D. Time evoiution

In order to obtain the time evolution of the scattering
data, we notice first of all rha[;{/(l ) =4,{0),j = 1,2,...,n, then
A,() = 4,{0) too. Moreover from (16), we get C,(r) = C
01 — 24, /8 + O(67%), 5% 1, while, from (63} at ¢ = 0,
we get C,(0) = (w/8)(1 + C(0)/8 + 06~12), 5 1.

Comparing these results with formula (63), we infer the
time evolution of C 7|2} and, through (62}, the time evolution
of y,le):

7ty =7,0
+2,t,7,(00= - C,(01/8 + (17274, )1 —im.  (69)

BlA,r)andf(A,r)originate from twodifferentlimits (1 > Oand
A < Q) of pi4, t). Comparing the limit of Eq. {16},

plAL) =pld.0le=*"(1 + 016~ ") A20, &>1,
with formulas (41aj and {41b), we infer that
BiAt)=B(A,0e4”, fldr)=F(A,01*" (70)

APPENDIX A

In this Appendix we will derive formulas {13} and {15}
that characterize an alternative approach for solving the in-
verse probiem of the ILW equation, to that given in Ref. 18,
which is in terms of a Gelfand-Levitan- Marchenko equa-
tion. While the two approaches are equivalent for the ILW
equation, it turns out that the one presented here is the most
appropriate to describe the limit to the BO equation. Let us
divide the scattering equation (8) by a({ _ }; the function
M \/alé ) isanalytic in the upper half§ _ plane except for
poles (the zeros §' . of aj; then

s ol C,,AV,
.V(X.g‘-] =1 +#*(x';-) -~ S‘ ~ - {Al)
alg . SRR

'

whereu .(x, 5 )isanalytic in the upper § . haif planeand.V,
and C, are defined in {10b) and (14), respectively.

Expressing 9(§. + 1/280(¢ 1Y (x5} in terms of its
(+]and( — | parts,

6. + 1/ Wxs )=U"xs )~ U~ x&) (A2)

L ] ’ S
Ueing= o [T RS e ay
~ww . = 6.+
and substituting ail of this informatior. into (8), we get & _|x,
§.)=U"x$.), and Eq. (13).
Equation {15) is obtained by considening Eq. {13) for
large ¢ .. In order to do that, we must evaluate the asympto-
tics of V (x, g .)forlarge§ .

. 1 [ Yy —x —i0) ]
G_lx,p. & j= — coth| —=——————"
sl 4i5j_, { 2
Y =] g ™ PO
X(LJ e fl—e¢ \,dp)dy‘
2r e p=I§. + 17281 — e~ ¥

coth((7/28)y — x = OV (1 + 01§ "),

4i6¢
s>l {A4)

-
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Then, using Eq. (6b), we get Nix, foi~1 =1/ ju™ix)as
s . — x, and Eq. 113) yields Eq. (15).

APPENDIX B

We will briefly discuss here the procedure used to
evaluate certain asymptotic calculations. As a prototype ex-
ample, consider the integral

G.lx il

-

edx -

l
= —dp.  (BY
2ﬂ'JC= g—=1&. + 17201 —e™ ) P

Using Cauchy’s theorem, we may evaluate the order of mag-
nitude of the contributions about 0 and A, the two singulari-
ties of the integrand. Asymptotically in & they are (i/

2le!'* =7 and — i/446, respectively. Then we split the inte-

gral J-’ dp = F dp + f dp and we expand the corre-
- - = [}

sponding integrands; the first term gives a 0 (5~ ') contribu-
tion and the second one gives g _ {x, y, 4 ). S0

G_lxpi)=g,xpAd)+0167", &L (B2)
Exactly the same procedure yields formula {55) and
G, xyAi=g_ (xpA)+07Y >, (B3

used in (36). The evaluation of G _ ix, y, —~4)e*'* ~”in(36)
requires more attention:

—~ 25+ 1=~
2met® — e~ 492

G .Alx—y)=

( -4
Jxoy, —Ale

dp

i gPE=N] — g =B -4
X By -
JC: (p =1, = 17281 —e~¥)}*

e.ptx -yl — 2p6

_ﬁj
Tor Je, (p=ib. = 1281 — e )

xdp(l <~ 0(6="). (B4)

Replacing¢ .4} ~ 1/28 withA iwith an exponentially smalil
error) and rescaling p with pd we finaily get

A X =

G:‘{X,y. —Ae

- -

—I—J = 4~ 015N
TA . il =

i

=~ _os- (BS)
A

The evaluation of G _ix, . 2/) up to terms of order § ' is
performed as follows:
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G’xy/i)——l— ad
s 27(1—25@,44—1/2{5)

» e.’p(x—ﬂ
+f —-dp
cwp =+ 121 — e
{ 1

» etnx-y’( V., + |
T8 2l p—4, \Sp—4

]

/l" - Inpd
- -y

ne=Q —'/LJ
— e‘P‘*-)""ZN
274, /-
— 1p — A, )"e*P8 .
x(z (= —7) )dp+0(5"')
A =0 A

/

=gx, p, ;) +(1/8g,(x, y, 4,) + O™, 61, (B6)

APPENDIX C

In this Appendix, we will discuss the asymptotic behav-
iorofnix,A ), mx,A ),Alx,A )whend — 0. Thesameideas will
also be used to obtain equations (43}45).

Let us consider function n(x, A ), solution of

n, —idn =ifun]*, n—e** iC1)
{{A ]~ indicates the{ + ) projection of 4 }, or, equivalently, the
solution of

nix,A) =e** + J“ g_(x.pA uy)niy.A \dy. (<2

Noticing that g _{x, y, A )~ — 1/27 In 4 as A—0, Eq. {C2)
will be satisfied at the O (1)1

nlx, A)~nyx)/Ind, A—D, (C3

where ng(x| satisfies the normalization condition

J ulyingy\dy = 2. (C4)

Substituting (C3) into (C1), we get
no, = ilung] ™. (CS)

Then Eq. (C5) and the normalization condition (C4) de-
fine the coefficient n,(x| of the [eading term in the

asymptotic expansion of n(x, A ) when A—0. In particu-
lar, it is easy to show that (C5) and {C4) imply that nyix}

— —Inx.

In exactly the same way, it is possible to show that

as A—0. 1C6)
Moreover, using (C6) and (C4), we can easily get
BAV~2mi/inA, flA)~ —1/AInA, A—D. iCN
Formulas (C7), as well as {C3) and (C6), are implicitly
used to prove the validity of (67} and to show that the
integrals contained in formulas (66} and (681 are well de-
fined.

Formuias (C31<C6} supercede the formulas (24) in Ref.
18 (the first of which is incorrect; however, only the or-

mix, A ), Al{x, A )~ nqx1/1n 4,
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~ N Ay

~

MO

a0

a4
p’s A




der of magnitude of the limit A —0 was used in Ref. 13.
This indicates that = _ u dx = 0 is not special in the
limit A—0.

Let us now prove by contradiction thatai’ = 1. Then let
us suppose that 0 < a4 < 1; it follows that

. % s 11 ) s T”GEA‘-’W%“
S A)I=C = —|— +0(677); C = —m——ro0,
¥ TR T ( © 0 2sin (may)
and

s gix = re
G xp Aj)~ — dp

2l e p—(C/8|1 — e~ )

- Lu(g )
2 é
Consequently using the same kind of arguments leading
to (C3) and (C4), one can show that Eg. (6a) implies

‘WO (X’ . *

M (x, 8~ ’ , with J- u M )y = 2.
Sl (C,/8) Ry
Then
ir

a ~1 _— ————————— ] F’O,
! i€, = pln (C,/8)
which contradicts the hypochesis.

Analogously, if @ = 0, ¢ _(4)) = (im/28%a}? + 0167
and G _(x, y, A;}~ ~ (1/2m)In(1/25). Consequently Eq.
{6a) implies

< -"{o;(x' . J"
M (x8)~ ———m—, with uf = 2.
O~ ) _ My iy
Then
25 25 ,
@~ — - - —— %(,
a'Mn(1/28) ai"nj1/28)

which again contradicts the hypothesis. So we are left
with the only choice @i’ = 1. In this case,

S. =A +v, /5+0(67Y,

o

1 -
y =l —— ul ; 1+ 016~
a 7y J__ayw,{ywy( )

wnil be zero only if {44) and (45a) hoid.

APPENDIX D

Given the following equation,

.

IKhix) =] - C,J uly\uy"dy

-G, [-lx — pPIX YA, s dy =Fix) D1

-
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{the operator K is defined in 14931}, Fredholm theory savs
that a solution exists iff

J 8 *1x\F Ixidx = 0, D2)

where ¢ satisties the equation 1K ~¥Yx) = O, where X ~ isthe
adjoint operator of K:

K~hjx)=hix) - u'fxif 2"y — xA, jhydy. 1D3)

As a consequence of the equation 1K ~¢}*'x) = 0, we have
that

U*x\F (x)dx = [1 - C,J‘ u(ytpb”(y)dyU U*ixidx.

- - x - o (D4)
Then the condition f U*ixjdx #0 implies

1+ le ulylus'tyidy = 0. (D3)
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